超厚板箱體結(jié)構(gòu)焊接溫度場及應(yīng)力場的三維數(shù)值模擬
本文選題:超厚板 + 殘余應(yīng)力 ; 參考:《武漢理工大學(xué)》2013年碩士論文
【摘要】:焊接技術(shù)發(fā)源于機械加工行業(yè),是一種高效經(jīng)濟的材料加工手段。隨著建筑鋼結(jié)構(gòu)的普及,焊接技術(shù)也逐漸應(yīng)用到土木結(jié)構(gòu)領(lǐng)域。近幾年,大型鋼結(jié)構(gòu)層出不窮,結(jié)構(gòu)高度也不斷增加,與之相適應(yīng)的是鋼板厚度不斷增加,鋼構(gòu)尺寸不斷增大。在焊接拼裝過程中,超厚板、超大尺寸鋼結(jié)構(gòu)容易產(chǎn)生焊接殘余應(yīng)力及變形等問題,進而影響構(gòu)件安裝的精度和施工質(zhì)量。在構(gòu)件的焊接拼裝之前,通過計算機模擬焊接中的溫度場和應(yīng)力場,提前預(yù)測焊接溫度的變化及應(yīng)力和變形情況,具有快捷和經(jīng)濟的優(yōu)點,也可以為現(xiàn)場施工提供指導(dǎo),提高工作效率,降低施工成本,因此具有重要的現(xiàn)實意義。 本文從焊接熱傳導(dǎo)的基礎(chǔ)理論出發(fā),以有限元分析方法為手段,對80mm超厚板的焊接熱循環(huán)過程及超大型超厚板箱體鋼結(jié)構(gòu)的焊接過程進行動態(tài)模擬,同時計算出焊接溫度和殘余應(yīng)力應(yīng)變的分布情況。針對厚板或超厚板的焊接,本文提出如下新思維:選擇雙橢球熱源模型和必要的簡化手段來模擬超厚板的焊接過程具有模擬的可行性和結(jié)果的可靠性;利用ANSYS的參數(shù)化設(shè)計語言程序可以實現(xiàn)多條焊縫同時施焊的模擬過程。在鋼結(jié)構(gòu)的設(shè)計階段,考慮到焊接安裝的質(zhì)量要求,設(shè)計人員可以事先通過計算機模擬來選擇最佳的焊接順序,以滿足施工的質(zhì)量要求;通過箱體結(jié)構(gòu)的焊接模擬,我們可以得知其邊緣區(qū)域(與后續(xù)焊接工作相接合的部位)的溫度基本維持在室溫,且此區(qū)域的焊接殘余應(yīng)力很小,不會發(fā)生屈服現(xiàn)象。雖然邊緣區(qū)域的變形受到焊縫區(qū)域塑性變形累積效應(yīng)的影響,但在整體焊接過程中模型與其它構(gòu)件相連焊接點的最大位移為O.08mm左右,這個數(shù)據(jù)在現(xiàn)場施工的可控范圍內(nèi)。 同時,本文針對同一厚度的超厚板多道焊的焊接過程作溫度場模擬,通過比較焊接溫度的變化幅度,得出:增加焊道數(shù)目,可以提高焊接質(zhì)量,即多道焊優(yōu)于雙道焊或單道焊;溫度分布僅僅影響到與焊縫相連的鋼板區(qū)域。同時本文也考慮了CO2焊所用焊絲與被焊鋼板的熱物理和力學(xué)性能參數(shù)隨著溫度而變化的因素,這樣既符合實際情況,又不影響計算結(jié)果的可靠性。
[Abstract]:Welding technology originated in the mechanical processing industry, is an efficient and economical means of material processing.With the popularization of building steel structure, welding technology is gradually applied to the field of civil structure.In recent years, large steel structures have emerged in endlessly, and the height of the structures has been increasing. The thickness of steel plates and the size of steel structures have been increasing.In the process of welding and assembling, the problems of welding residual stress and deformation are easy to occur in the super-thick plate and super-large steel structure, which will affect the installation accuracy and construction quality of the components.Before the component is welded and assembled, the temperature field and stress field in welding are simulated by computer, and the variation of welding temperature and stress and deformation are predicted in advance, which has the advantages of quick and economical, and can also provide guidance for field construction.It is of great practical significance to improve working efficiency and reduce construction cost.Based on the basic theory of welding heat conduction and the finite element analysis method, this paper simulates the welding heat cycle process of 80mm ultra-thick plate and the welding process of super-thick box steel structure by means of finite element analysis.At the same time, the distribution of welding temperature and residual stress and strain are calculated.For the welding of thick or ultra-thick plates, the following new ideas are put forward: selecting double ellipsoid heat source model and necessary simplified means to simulate the welding process of ultra-thick plates has the feasibility of simulation and reliability of the results;The simulation process of simultaneous welding of multiple welds can be realized by using the parametric design language of ANSYS.In the design stage of steel structure, considering the quality requirement of welding installation, the designer can select the best welding sequence through computer simulation in order to meet the quality requirement of construction, and through the welding simulation of box structure,It can be seen that the temperature of the edge region (where the welding work is joined with the subsequent welding work) is maintained at room temperature, and the welding residual stress in this region is very small, and there is no yield phenomenon.Although the deformation in the edge region is affected by the cumulative plastic deformation effect in the weld zone, the maximum displacement of the welding joint connected with other components in the whole welding process is about O.08mm, which is within the controllable range of site construction.At the same time, this paper simulates the temperature field of the multi-pass welding process of super-thick plate with the same thickness. By comparing the variation of welding temperature, it is concluded that increasing the number of welding passes can improve the welding quality, that is, multi-pass welding is better than double-pass welding or single-pass welding;The temperature distribution only affects the area of the steel plate connected to the weld.At the same time, the factors that the thermal physical and mechanical properties of wire and welded steel plate used in CO2 welding vary with temperature are considered, which is not only in line with the actual situation, but also does not affect the reliability of the calculation results.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU391
【參考文獻】
相關(guān)期刊論文 前10條
1 高耀東;何雪;;基于ANSYS單元生死技術(shù)的焊接模擬[J];熱處理技術(shù)與裝備;2010年01期
2 陳楚,汪建華,楊洪慶;非線性焊接熱傳導(dǎo)的有限元分析和計算[J];焊接學(xué)報;1983年03期
3 王文先,霍立興,張玉鳳,王東坡;低相變點焊縫金屬接頭的焊接殘余變形[J];焊接學(xué)報;2003年05期
4 方洪淵;張學(xué)秋;楊建國;劉雪松;;焊接應(yīng)力場與應(yīng)變場的計算與討論[J];焊接學(xué)報;2008年03期
5 楊廣臣;張彥華;;低碳鋼高溫相變對焊接角變形的影響[J];焊接學(xué)報;2010年08期
6 李培麟;陸?zhàn)?;多絲埋弧焊工藝條件對熱源參數(shù)的影響[J];焊接學(xué)報;2011年06期
7 林燕,董俊慧,劉軍;焊接殘余應(yīng)力數(shù)值模擬研究技術(shù)的現(xiàn)狀與發(fā)展[J];焊接技術(shù);2003年06期
8 鄒德寧,雷永平,黃廷祿,蘇俊義;移動熱源條件下熔池內(nèi)流體流動和傳熱問題的數(shù)值研究[J];金屬學(xué)報;2000年04期
9 蔡洪能,唐慕堯;TIG焊接溫度場的有限元分析[J];機械工程學(xué)報;1996年02期
10 欒尚清;左玉營;丁國峰;;焊接溫度場與應(yīng)力場的研究歷史與發(fā)展[J];科技信息(科學(xué)教研);2008年03期
相關(guān)碩士學(xué)位論文 前8條
1 孫志明;中厚板焊接有限元數(shù)值模擬及其參數(shù)優(yōu)化[D];北京交通大學(xué);2011年
2 梁曉燕;中厚板多道焊焊接過程中溫度場和應(yīng)力場的三維數(shù)值模擬[D];華中科技大學(xué);2004年
3 顧立志;鋁合金筒體焊接溫度場和應(yīng)力應(yīng)變場的三維數(shù)值模擬[D];天津大學(xué);2005年
4 佘昌蓮;焊接結(jié)構(gòu)的殘余應(yīng)力研究[D];武漢理工大學(xué);2006年
5 李凌;中厚板焊接溫度場及應(yīng)力場數(shù)值計算[D];天津大學(xué);2006年
6 畢艷霞;T型接頭焊接溫度場與應(yīng)力場的數(shù)值模擬[D];浙江大學(xué);2007年
7 陳卿;帶筋板的鋁合金筒形結(jié)構(gòu)殘余應(yīng)力場分析[D];天津大學(xué);2007年
8 吉巧杰;封閉焊縫焊接溫度場和應(yīng)力場的數(shù)值模擬[D];華中科技大學(xué);2007年
,本文編號:1754331
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1754331.html