空間網(wǎng)殼結構損傷評價及加固方法研究
本文選題:BRB 切入點:受損單層網(wǎng)殼結構 出處:《蘭州理工大學》2013年碩士論文
【摘要】:目前,我國已經(jīng)建成了許多大跨度空間網(wǎng)殼結構,結構在使用過程中,由于各種原因會使既有大跨網(wǎng)殼結構出現(xiàn)不同程度的損傷,而損傷的存在對網(wǎng)殼結構的受力性能是極為不利的,會極大地降低結構的極限承載力和抗震能力,使得原本抗震性能優(yōu)異的網(wǎng)殼在強震作用下會出現(xiàn)失效、倒塌的可能。我國是地震多發(fā)國,大跨網(wǎng)殼結構一般又都屬于人流密集的重要公共建筑,使得其抗震性能優(yōu)劣關系十分重大。因此,對受損大跨網(wǎng)殼結構損傷評價并進行抗震加固修復后,能否繼續(xù)正常工作并且具有良好的抗震能力,是一個十分有必要去解決的問題,但是關于這方面的研究目前尚不成熟。 BRB(約束屈曲支撐)是目前擁有廣泛應用前景的耗能減震構件,施工安裝方便、經(jīng)濟、設計靈活而且不影響建筑物的美觀,使其不僅成為新建結構抗震設計的較佳選擇,也是已建受損結構抗震加固和改造的重要手段。因此本文對約束屈曲支撐在受損大跨網(wǎng)殼結構抗震加固中的應用研究展開了分析。 根據(jù)剩余模態(tài)力理論運用ANSYS有限元軟件并結合模態(tài)實驗測試結果對一受損網(wǎng)殼結構進行基于固有頻率變化方法的損傷評價以建立較精確的受損網(wǎng)殼結構數(shù)值模型,通過對其進行靜力和動力性能分析,提出三種抗震加固方案(方案一,將所有受損桿件進行原桿替換修復;方案二,利用BRB替換所有的受損桿件;方案三,將受損較輕微的桿件替換為原桿,將受損較嚴重的桿件替換為BRB)。首先對加固前后的模型進行了靜力安全性分析,其次選擇EL-Centro波,天津波,Taft波罕遇地震記錄,按三向輸入進行動力時程分析并進行方案對比。然后,從網(wǎng)殼結構形式、BRB屈服強度、尺寸大小以及地震動加速度峰值等方面進行參數(shù)分析。最后對雅丹觀光塔不規(guī)則雙層網(wǎng)格結構進行設計分析,找出結構關鍵桿件,并假設部分桿件受損,對其進行結構剩余承載力評價。 通過分析得出以下結論:BRB不僅可以對新建結構進行抗震設計,也可以成為已有受損結構抗震加固和改造的重要手段。通過對三種方案加固后的結構在正常工作狀態(tài)下的靜力安全性分析以及在不同地震波記錄作用下的動力響應分析,說明利用BRB進行受損網(wǎng)殼結構的抗震加固在保證結構正常使用靜力安全性的前提下,能夠很好地改善結構的抗震性能。網(wǎng)殼結構跨度越大、地震動加速度幅值越高,約束屈曲支撐的抗震加固效果越好;BRB屈服強度為80MPa、100MPa,截面尺寸為0.8倍和1.0倍原桿截面時抗震加固效果較好;而且在進行網(wǎng)殼結構分析時不應該忽視下部支撐對上部結構的影響。對一些實際工程可以結合各工況荷載設計分析的結果,假設結構部分桿件出現(xiàn)損傷,通過結構剩余承載力評價的方法找出結構的關鍵桿件,對后期的施工與使用提供指導。
[Abstract]:At present, many long-span space latticed shell structures have been built in our country. In the process of using, the existing long-span latticed shell structures will be damaged to varying degrees due to various reasons. However, the existence of damage is unfavorable to the mechanical performance of latticed shell structure, which will greatly reduce the ultimate bearing capacity and seismic capacity of the structure, and make the original reticulated shell with excellent seismic performance appear failure under the action of strong earthquake. The possibility of collapse. China is an earthquake-prone country, and the long-span latticed shell structure generally belongs to an important public building with dense flow, which makes its seismic performance very important. It is very necessary to solve the problem of damage evaluation and seismic reinforcement of long-span latticed shell structure, whether it can continue to work normally and have good seismic capacity, but the research on this aspect is not mature at present. BRBs (constrained buckling braces) are energy dissipation shock absorbers with wide application prospects. They are easy to install, economical, flexible in design and do not affect the beauty of buildings, making them not only a better choice for aseismic design of newly built structures, but also a good choice for aseismic design of new structures. It is also an important means for seismic reinforcement and reconstruction of damaged structures. Therefore, the application of constrained buckling braces in seismic reinforcement of long-span latticed shell structures is analyzed in this paper. According to the residual modal force theory, the damage evaluation of a damaged latticed shell structure based on the natural frequency variation method is carried out by using the finite element software ANSYS and the results of the modal experiment to establish a more accurate numerical model of the damaged latticed shell structure. Through the static and dynamic performance analysis, three kinds of seismic reinforcement schemes are put forward: one is to replace all the damaged members with the original rod; the other is to replace all the damaged members with BRB; the third is to replace all the damaged members. The less damaged member is replaced by the original rod, and the severely damaged member is replaced by BRB.Firstly, the static safety analysis of the model before and after reinforcement is carried out, and then the EL-Centro wave, Tianjin wave and Taft Bohan seismic records are selected. The dynamic time history analysis is carried out according to the three-direction input and the scheme is compared. Then, the BRB yield strength is obtained from the reticulated shell structure. Finally, the irregular double-layer grid structure of Yadan sightseeing tower is designed and analyzed, and the key members of the structure are found out, and some of the members are assumed to be damaged. The residual bearing capacity of the structure is evaluated. Through the analysis, we can draw the following conclusion: 1. BRB can not only be used for seismic design of newly built structures, It can also become an important means of seismic reinforcement and reconstruction of existing damaged structures. Through the static safety analysis of the structures strengthened by three schemes under normal working conditions and the dynamic response analysis under the action of different seismic wave records, It is shown that seismic reinforcement of damaged latticed shell structure by BRB can improve the seismic performance of the structure on the premise of ensuring the static safety of the structure in normal use. The larger the span of the latticed shell structure, the higher the acceleration amplitude of ground motion. The better the seismic strengthening effect of restrained buckling braces is, the better the effect of seismic reinforcement is when the yield strength of BRB is 80 MPA / 100 MPa, the cross section size is 0.8 times and 1.0 times the original bar section. In addition, the influence of the lower support on the superstructure should not be ignored in the analysis of the latticed shell structure. For some practical projects, the damage of some members of the structure can be assumed by combining the results of the design and analysis of the loads under various working conditions. The key members of the structure are found by the method of evaluation of the residual bearing capacity of the structure, which provides guidance for the construction and use of the structure in the later stage.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TU33
【參考文獻】
相關期刊論文 前10條
1 褚洪民;錢洪濤;鄧雪松;周云;;應用防屈曲耗能支撐進行抗震加固的研究與應用[J];四川建筑科學研究;2007年S1期
2 蘇經(jīng)宇,曾德民;我國建筑結構隔震技術的研究和應用[J];地震工程與工程振動;2001年S1期
3 高贊明,孫宗光,倪一清;基于振動方法的汲水門大橋損傷檢測研究[J];地震工程與工程振動;2001年S1期
4 范峰,沈世釗;網(wǎng)殼結構的粘彈阻尼器減振分析[J];地震工程與工程振動;2003年03期
5 高超;曲激婷;姜峰;;淺談大跨度空間結構相關振動控制[J];防災減災工程學報;2010年S1期
6 Yong-Chul Kim;;Seismic isolation analysis of FPS bearings in spatial lattice shell structures[J];Earthquake Engineering and Engineering Vibration;2010年01期
7 宋捷;;建筑抗震檢測鑒定及加固的現(xiàn)狀與展望[J];工程建設與設計;2010年05期
8 北京火車站抗震加固與改造設計項目組;北京火車站抗震鑒定與加固技術[J];工程抗震;2003年01期
9 張敬書,潘寶玉;現(xiàn)行抗震加固方法及發(fā)展趨勢[J];工程抗震與加固改造;2005年01期
10 王秀麗;王磊;;新型橢球網(wǎng)殼減震體系性能分析[J];工程抗震與加固改造;2007年04期
相關博士學位論文 前2條
1 殷占忠;帶有約束屈曲支撐桿件的空間網(wǎng)殼結構抗震性能分析與試驗研究[D];蘭州理工大學;2008年
2 李曉東;屈曲約束支撐的動力性能研究及其在鋼拱結構中的應用[D];蘭州理工大學;2008年
相關碩士學位論文 前8條
1 任廣智;雙層柱面網(wǎng)殼抗震控制理論研究[D];北京工業(yè)大學;2000年
2 張麗梅;鋼桁架結構無損檢測的動力學敏感參數(shù)研究[D];河北農(nóng)業(yè)大學;2004年
3 劉成軍;網(wǎng)殼結構與下部支承體系協(xié)同工作的研究[D];東南大學;2005年
4 張曉將;新型鋼筋混凝土框架—支撐減震體系設計方法研究[D];蘭州理工大學;2009年
5 吳長;約束屈曲支撐在大跨度雙層網(wǎng)殼的減震性能分析[D];蘭州理工大學;2009年
6 劉迪;附設耗能裝置的基礎隔震建筑抗震性能研究[D];蘭州理工大學;2010年
7 秦絨絨;拉索預應力球面巨型網(wǎng)格結構的地震響應及減震控制研究[D];湖南大學;2010年
8 莊向仕;桁架式跨河管架的地震可靠性評價及優(yōu)化設計[D];中國石油大學;2010年
,本文編號:1685560
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1685560.html