框架—剪力墻結(jié)構(gòu)基于構(gòu)件變形指標(biāo)的抗震性能評(píng)估
本文選題:構(gòu)件變形指標(biāo) 切入點(diǎn):框架-剪力墻結(jié)構(gòu) 出處:《華南理工大學(xué)》2013年碩士論文
【摘要】:基于構(gòu)件變形的抗震設(shè)計(jì)方法目前已在部分復(fù)雜的超限工程設(shè)計(jì)中得到應(yīng)用。在高層建筑結(jié)構(gòu)抗震設(shè)計(jì)中,一般取小震的地震動(dòng)參數(shù)按彈性方法進(jìn)行承載力和變形驗(yàn)算,通過抗震措施來保證其“中震可修,大震不壞”;而結(jié)構(gòu)在罕遇地震作用下真實(shí)的抗震性能卻無從得知。采用構(gòu)件變形指標(biāo)對(duì)罕遇地震下高層建筑結(jié)構(gòu)的抗震性能進(jìn)行評(píng)估,有助于了解結(jié)構(gòu)在罕遇地震作用下的真實(shí)破壞狀態(tài),驗(yàn)證規(guī)范抗震措施的合理性,為完善規(guī)范抗震措施提供參考,具有重要的工程和現(xiàn)實(shí)意義。 本文研究框架-剪力墻結(jié)構(gòu),研究工作主要包括以下幾項(xiàng)內(nèi)容: (1)開發(fā)了結(jié)構(gòu)彈塑性分析程序Perform-3D的前后處理程序,,將鋼筋混凝土梁、柱、剪力墻的構(gòu)件變形指標(biāo)嵌入后處理模塊,實(shí)現(xiàn)了根據(jù)構(gòu)件的預(yù)測(cè)破壞形態(tài)、剪跨比、彎剪比和軸壓比等參數(shù)確定各構(gòu)件的變形限值等功能,為基于構(gòu)件變形指標(biāo)的抗震性能評(píng)估提供了切實(shí)可行的方法和手段。 (2)根據(jù)中國(guó)規(guī)范設(shè)計(jì)了9棟框架-剪力墻結(jié)構(gòu),為每個(gè)結(jié)構(gòu)選擇了20條符合要求的地震波,進(jìn)行動(dòng)力彈塑性時(shí)程分析,對(duì)彈塑性分析模型和結(jié)果的可靠性進(jìn)行了判斷;并通過層間位移對(duì)各結(jié)構(gòu)的整體抗震性能進(jìn)行評(píng)估,認(rèn)為各結(jié)構(gòu)的變形基本滿足規(guī)范要求。 (3)獲取彈塑性時(shí)程分析過程中各構(gòu)件最大的塑性區(qū)轉(zhuǎn)角及對(duì)應(yīng)的內(nèi)力,預(yù)測(cè)其破壞形態(tài),確定變形限值,評(píng)估性能狀態(tài)。對(duì)每個(gè)結(jié)構(gòu),統(tǒng)計(jì)所有構(gòu)件各性能狀態(tài)所占的比例。絕大部分連梁的性能狀態(tài)達(dá)到了性能6或剪切:變形過大;超過半數(shù)的剪力墻預(yù)測(cè)破壞形態(tài)為剪切破壞,剪力墻的損傷集中在首層,但只有極少數(shù)剪力墻的性能狀態(tài)達(dá)到性能6或剪切:變形過大,說明第一道防線較好地耗散了地震能量。框架梁的性能狀態(tài)大多數(shù)為性能1或性能2;絕大部分框架柱的性能狀態(tài)為性能1,說明第二道防線具有足夠的安全儲(chǔ)備。
[Abstract]:The aseismic design method based on component deformation has been applied in some complex over-limit engineering design at present. In the seismic design of high-rise building, the seismic parameters of small earthquakes are generally taken to calculate the bearing capacity and deformation according to elastic method. The aseismic measures are adopted to ensure that the medium earthquake can be repaired, but the large earthquake is not bad, but the real seismic behavior of the structure under rare earthquake is not known. The seismic behavior of high-rise building under rare earthquake is evaluated by using the component deformation index. It is helpful to understand the true failure state of structures under rare earthquake, to verify the rationality of the seismic measures of the code, to provide reference for perfecting the seismic measures of the code, and to have important engineering and practical significance. In this paper, the frame-shear wall structure is studied. The research work mainly includes the following contents:. 1) the pre-and post-processing program of the elastic-plastic structural analysis program Perform-3D is developed. The deformation index of reinforced concrete beams, columns and shear walls is embedded in the post-processing module, which realizes the prediction of failure patterns and shear span ratio according to the member's prediction. The parameters such as bending shear ratio and axial compression ratio are used to determine the deformation limit value of each member, which provides a feasible method and means for the seismic performance evaluation based on the deformation index of the member. (2) according to Chinese code, 9 frame-shear wall structures are designed, 20 seismic waves are selected for each structure, dynamic elastic-plastic time-history analysis is carried out, and the reliability of elastic-plastic analysis model and results is judged. The overall seismic performance of each structure is evaluated by floor displacement, and the deformation of each structure is considered to meet the requirements of the code. (3) obtaining the maximum plastic zone turning angle and corresponding internal force of each member during the elastoplastic time history analysis, predicting the failure form, determining the deformation limit value, evaluating the performance state. The proportion of performance states of all members is counted. The performance state of most connecting beams reaches performance 6 or shear: the deformation is too large, more than half of the predicted failure form of shear wall is shear failure, and the damage of shear wall is concentrated on the first floor. But only a very small number of shear walls have performance states that reach performance 6 or shear: the deformation is too large, The results show that the first line of defense dissipates seismic energy well, the performance state of frame beam is mostly performance 1 or performance 2, and the performance state of most frame columns is performance 1, which indicates that the second line of defense has sufficient safety reserve.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU398.2;TU352.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李應(yīng)斌,劉伯權(quán),史慶軒;基于結(jié)構(gòu)性能的抗震設(shè)計(jì)理論研究與展望[J];地震工程與工程振動(dòng);2001年04期
2 吳波,熊焱;一種直接基于位移的結(jié)構(gòu)抗震設(shè)計(jì)方法[J];地震工程與工程振動(dòng);2005年02期
3 韓小雷;戴金華;何偉球;吳建營(yíng);陳勇;鄭宜;季靜;;廣州花園酒店“白金五星級(jí)酒店”結(jié)構(gòu)改造基于性能的可行性研究[J];地震工程與工程振動(dòng);2007年05期
4 韓小雷;鄭宜;季靜;黃藝燕;;美國(guó)基于性能的高層建筑結(jié)構(gòu)抗震設(shè)計(jì)規(guī)范[J];地震工程與工程振動(dòng);2008年01期
5 黃雅虹;呂悅軍;蘭景巖;施春花;史丙新;;工程場(chǎng)地分類中等效剪切波速計(jì)算深度問題的討論[J];地震地質(zhì);2010年02期
6 羅奇峰,王玉梅;從近幾年震害總結(jié)中提出的結(jié)構(gòu)性能設(shè)計(jì)理論[J];工程抗震;2001年02期
7 吳繼偉;;建筑結(jié)構(gòu)性能設(shè)計(jì)方法與常規(guī)設(shè)計(jì)方法的比較[J];工程抗震與加固改造;2009年05期
8 鄧明科;梁興文;辛力;;剪力墻結(jié)構(gòu)基于性能抗震設(shè)計(jì)的目標(biāo)層間位移確定方法[J];工程力學(xué);2008年11期
9 謝禮立,馬玉宏;現(xiàn)代抗震設(shè)計(jì)理論的發(fā)展過程[J];國(guó)際地震動(dòng)態(tài);2003年10期
10 雷磊;韓小雷;鄭宜;;直接基于位移的抗震設(shè)計(jì)方法的研究[J];華南地震;2007年02期
相關(guān)博士學(xué)位論文 前1條
1 勞曉春;RC矩形截面剪力墻構(gòu)件的抗震性能及其性能指標(biāo)限值研究[D];華南理工大學(xué);2010年
本文編號(hào):1680408
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1680408.html