砌體結(jié)構(gòu)教學(xué)樓抗震性能及地震破壞機(jī)制控制研究
本文選題:砌體結(jié)構(gòu) 切入點(diǎn):震害分析 出處:《西南交通大學(xué)》2013年博士論文
【摘要】:2008年汶川大地震造成磚砌體結(jié)構(gòu)教學(xué)樓大量破壞,部分教學(xué)樓受到嚴(yán)重破壞甚至倒塌,砌體結(jié)構(gòu)教學(xué)樓在強(qiáng)震作用下的抗震性能和抗倒塌安全性引起學(xué)者們的廣泛關(guān)注。砌體結(jié)構(gòu)教學(xué)樓一般具有開(kāi)間和進(jìn)深較大、墻體數(shù)量少、縱墻開(kāi)洞率高等不利于結(jié)構(gòu)抗震的特點(diǎn),目前對(duì)其抗震性能的認(rèn)識(shí)主要基于震害調(diào)查分析,現(xiàn)行抗震設(shè)計(jì)規(guī)范針對(duì)大開(kāi)間砌體結(jié)構(gòu)的地震破壞模式設(shè)計(jì)缺少特別規(guī)定,對(duì)砌體結(jié)構(gòu)教學(xué)樓的抗震性能、地震破壞機(jī)制控制以及窗間墻和進(jìn)深較大墻體的抗震性能及其影響因素等研究不夠。本文選取砌體結(jié)構(gòu)教學(xué)樓為研究對(duì)象,對(duì)大開(kāi)間砌體結(jié)構(gòu)的抗震性能及地震破壞機(jī)制控制進(jìn)行研究,主要研究工作和結(jié)論如下: 1)分析了砌體結(jié)構(gòu)教學(xué)樓的組成特點(diǎn)和典型震害特征,比較了砌體結(jié)構(gòu)“強(qiáng)柱弱梁”和“強(qiáng)梁弱柱”兩種宏觀破壞機(jī)制下結(jié)構(gòu)抗震能力的差異,對(duì)結(jié)構(gòu)震害原因進(jìn)行了初步分析,針對(duì)結(jié)構(gòu)抗震的薄弱環(huán)節(jié)提出了相關(guān)的抗震設(shè)計(jì)建議。 2)進(jìn)行了5片縱墻試件的擬靜力試驗(yàn),研究了窗間墻的抗震性能及其影響因素。結(jié)果表明,按照規(guī)范要求設(shè)置構(gòu)造柱的墻體具有較好的抗震能力,適當(dāng)增大構(gòu)造柱截面尺寸能夠進(jìn)一步改善墻體的破壞形態(tài)、延性和耗能能力,但增大中柱截面配筋率到一定程度時(shí)反而降低墻體的延性和耗能能力。 3)進(jìn)行了5片橫墻試件的擬靜力試驗(yàn),分析了圈梁與構(gòu)造柱的布置方式對(duì)其破壞模式和抗震性能的影響。結(jié)果表明,圈梁與構(gòu)造柱的設(shè)置方式?jīng)Q定了墻體的抗震性能,按照現(xiàn)行抗震設(shè)計(jì)規(guī)范在橫墻兩端設(shè)置構(gòu)造柱,同時(shí)保證墻體與基礎(chǔ)梁間不發(fā)生剪切滑移,則橫墻的抗震性能相對(duì)較好;中間增設(shè)構(gòu)造柱或同時(shí)加設(shè)圈梁墻體的抗震性能并沒(méi)有得到有效改善,但增設(shè)圈梁和構(gòu)造柱的試件,極限變形后破壞墻塊的變形受到中間圈梁的約束,墻體具有較好的后期整體性。 4)通過(guò)1個(gè)兩層磚砌體結(jié)構(gòu)縮尺模型的擬靜力試驗(yàn),對(duì)窗間墻扶壁柱配筋率為1.67%的砌體模型的破壞特點(diǎn)、抗震性能、窗間墻的破壞模式以及縱墻的破壞機(jī)制等進(jìn)行了研究。結(jié)果表明,窗間墻扶壁柱配筋率增大到一定程度時(shí),扶壁柱與兩側(cè)磚砌體部分的協(xié)調(diào)變形能力很差,導(dǎo)致模型發(fā)生層間破壞機(jī)制,窗間墻剪切破壞,縱墻發(fā)生“強(qiáng)梁弱柱”式破壞,部分窗間墻出現(xiàn)垮塌破壞,最終形成倒塌機(jī)制,模型的延性和耗能能力均較差。 5)進(jìn)行了2個(gè)磚砌體結(jié)構(gòu)縮尺模型(窗間墻扶壁柱配筋率為0.77%)的擬靜力試驗(yàn),分別對(duì)普通磚砌體窗間墻模型和窗間墻錨固配筋模型的破壞特征、承載能力、變形能力、延性和耗能能力、窗間墻的破壞模式、縱墻的宏觀破壞機(jī)制及其控制條件等進(jìn)行了研究。結(jié)果表明,普通窗間墻模型發(fā)生層間破壞機(jī)制,窗間墻剪切破壞,縱墻發(fā)生“強(qiáng)梁弱柱”式破壞,模型最終形成倒塌機(jī)制;窗間墻錨固配筋模型發(fā)生整體型破壞,窗間墻彎曲破壞,縱墻的宏觀破壞具有“強(qiáng)柱弱梁”特征,模型的破壞形態(tài)、延性和耗能能力等均得到顯著改善,層間變形均勻。因此,窗間墻局部錨固配筋的抗震設(shè)計(jì)方法能夠?qū)崿F(xiàn)對(duì)結(jié)構(gòu)地震破壞機(jī)制的有效控制,而保證相鄰層兩窗間墻的受彎承載力之和高于相鄰兩窗下墻承載力之和有利于“強(qiáng)柱弱梁”式破壞機(jī)制的形成。 6)采用鋼筋網(wǎng)水泥砂漿面層對(duì)砌體結(jié)構(gòu)教學(xué)樓的縱向窗間墻進(jìn)行三面抗震加固并采取錨固措施,通過(guò)模型擬靜力試驗(yàn)對(duì)加固窗間墻磚砌體結(jié)構(gòu)模型的破壞特點(diǎn)、抗震性能、窗間墻的破壞模式、縱墻的破壞機(jī)制及其設(shè)計(jì)控制條件等進(jìn)行了分析。結(jié)果表明,模型發(fā)生整體型破壞,窗間墻彎曲破壞,模型的延性和耗能能力比普通磚砌體窗間墻模型得到明顯改善,承載能力和變形能力也得到提高,最終形成“強(qiáng)柱弱梁”抗倒塌機(jī)制。
[Abstract]:2008 Wenchuan earthquake caused massive destruction of brick masonry structure building, part of the teaching building suffered serious damage or even collapse, the seismic performance of masonry structure buildings under severe earthquake and anti collapse safety caused widespread concern of scholars. Masonry teaching building has great Wall Bay and depth, the quantity is less, with characteristics of vertical wall the higher rate is not conducive to seismic, the current understanding of the seismic performance is mainly based on the earthquake damage investigation and analysis, the current seismic design code for large bay masonry structure seismic damage model design lacks the special regulations, the seismic performance of masonry structure building, the seismic failure mechanism and seismic performance control and the influence of wall between windows and deep into larger the factors of wall is not enough. This paper selects masonry teaching building as the research object, the seismic performance of masonry structure and large bay earthquake The main research work and conclusions are as follows:
1) analysis of the characteristics of masonry structure teaching building and the typical damage characteristic, compares the differences of structural seismic capacity of masonry structure "strong column and weak beam" and "strong beam weak column" two macro failure mechanism and the structure damage reason was analyzed. Aiming at the weak link of the structure seismic forward seismic design suggestions related.
2) the 5 longitudinal wall hysteretic test, seismic performance and its influencing factors were studied. The results show that the wall between windows, according to the requirement of constructional column wall has better seismic capacity, increasing the columns size can damage form and further improve the wall, ductility and energy dissipation. But the increase in column reinforcement ratio to a certain extent but reduce the ductility and energy dissipation capacity of the wall.
3) the 5 transverse wall hysteretic test, analyzes the arrangement of circle beam and constructional column on the failure mode and seismic performance. The results show that the method of circle beam and constructional column setting determines the seismic performance of the wall, according to the current code for seismic design of constructional column in cross wall ends at the same time ensure shear slip occurs wall and foundation beam, transverse wall seismic performance is relatively good; the middle construction column and the seismic performance of a beam or wall has not been effectively improved, but the addition of beam and column specimens, limit deformation after the deformation and failure of wall blocks by middle beam constraint the wall has a good overall, late.
4) through the pseudo static test of 1 layer structure of two scale model of brick masonry wall, the wall between windows column reinforcement ratio for masonry model 1.67% damage characteristics, seismic performance, window wall failure mode and failure mechanism of longitudinal wall were studied. The results show that the wall between windows buttress columns reinforcement ratio increases to a certain extent, coordination and both sides of the brick masonry wall supporting column deformation ability is poor, leading to model delamination mechanism, window wall shear, longitudinal wall of the "strong beam weak column" type of failure, part of the wall between windows appear collapsed, and ultimately the formation of collapse mechanism, ductility and energy dissipation. The model is also poor.
5) the 2 scale model of brick masonry structure (the wall between windows wall reinforcement ratio of the column is 0.77%) the pseudo static test, respectively on the failure characteristics of ordinary brick masonry wall between Windows model and window wall anchorage reinforcement model of bearing capacity, deformation capacity, ductility and energy dissipation capacity and failure mode between windows the wall, the macro failure mechanism of longitudinal wall and control conditions were studied. The results show that the common wall between Windows model layer failure mechanism, window wall shear, longitudinal wall of the "strong beam weak column" failure model, and ultimately the formation of collapse mechanism; window wall anchorage reinforcement model of integral type destroy the wall between windows bending failure, the macroscopic failure of longitudinal wall has strong column and weak beam characteristics, failure model, ductility and energy dissipation capacity were significantly improved, the interlayer deformation. Therefore, the seismic design method of window wall anchor reinforcement can be realized The effective control of the seismic failure mechanism of the structure is ensured, and the sum of the bending capacity of the two windows between adjacent layers is higher than the sum of the bearing capacity of the adjacent two windows, which is beneficial to the formation of the failure mechanism of strong column and weak beam.
6) the reinforced mortar layers of masonry teaching building longitudinal wall between windows three surface seismic strengthening and take reinforcement measures, the pseudo static test model of damage characteristics, brick masonry structure model window reinforcement seismic performance, failure mode and failure mechanism of wall between windows, vertical wall and design control conditions were analyzed. The results show that the model has the overall destruction, window wall bending failure, ductility and energy dissipation capacity of the model than the ordinary brick masonry wall between Windows model is improved, the carrying capacity and deformation capacity is also improved, and ultimately the formation of "strong column and weak beam" anti collapse mechanism.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU352.11;TU364
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張海峰 ,曾盛奎 ,孫建中;大型墻片抗震性能的試驗(yàn)研究[J];四川建筑科學(xué)研究;1983年01期
2 程才淵,朱伯龍,王曉敏,鄭頤;在低周反復(fù)荷載作用下灰砂磚墻體的抗震性能[J];四川建筑科學(xué)研究;1989年03期
3 程才淵,朱伯龍,王曉敏,鄭頤;有構(gòu)造柱灰砂磚墻體的抗震性能研究[J];四川建筑科學(xué)研究;1989年04期
4 藍(lán)貴祿;砌體房屋的抗震強(qiáng)度[J];地震工程與工程振動(dòng);1994年04期
5 洪峰,王紹博;砌體結(jié)構(gòu)抗震抗剪強(qiáng)度分析[J];地震工程與工程振動(dòng);2000年03期
6 王新平,鐘岱輝,胡偉;組合砌體房屋抗震性能試驗(yàn)研究及分析[J];地震工程與工程振動(dòng);2005年01期
7 孫景江;馬強(qiáng);石宏彬;孫忠賢;;汶川地震高烈度區(qū)城鎮(zhèn)房屋震害簡(jiǎn)介[J];地震工程與工程振動(dòng);2008年03期
8 劉海卿;倪鎮(zhèn)國(guó);歐進(jìn)萍;;強(qiáng)震作用下砌體結(jié)構(gòu)倒塌過(guò)程仿真分析[J];地震工程與工程振動(dòng);2008年05期
9 孫景江;唐玉紅;孫忠賢;鄭超;石宏彬;林淋;;汶川地震Ⅷ度和Ⅶ度區(qū)城市房屋震害及若干典型震害討論[J];地震工程與工程振動(dòng);2009年06期
10 郭迅;;汶川大地震震害特點(diǎn)與成因分析[J];地震工程與工程振動(dòng);2009年06期
相關(guān)博士學(xué)位論文 前1條
1 鄭妮娜;裝配式構(gòu)造柱約束砌體結(jié)構(gòu)抗震性能研究[D];重慶大學(xué);2010年
,本文編號(hào):1663751
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1663751.html