考慮土—樁—結(jié)構(gòu)相互作用的PHC管樁地震響應(yīng)研究
本文關(guān)鍵詞: PHC管樁 土-樁-上部結(jié)構(gòu)動(dòng)力相互作用 振動(dòng)臺(tái)試驗(yàn) 地震響應(yīng) 傅立葉譜 有限元分析 液化 出處:《武漢大學(xué)》2013年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:PHC管樁即高強(qiáng)混凝土預(yù)應(yīng)力管樁,由于其空心截面在剛度和抗剪強(qiáng)度等方面明顯弱于等尺寸的實(shí)體樁型,導(dǎo)致其抗震能力也同樣偏弱。而我國(guó)又是個(gè)多地震的國(guó)家,且高烈度地區(qū)范圍很廣,這制約著PHC管樁的推廣應(yīng)用。因此,對(duì)PHC管樁地震響應(yīng)的研究,特別是對(duì)其在高烈度地區(qū)適用性的研究就顯得十分必要。針對(duì)這個(gè)課題,本文開(kāi)展了考慮土-樁-上部結(jié)構(gòu)相互作用的PHC管樁地震響應(yīng)研究工作。 (一)、采用以振動(dòng)臺(tái)模型試驗(yàn)為主,有限元數(shù)值計(jì)算為輔,兩者互相驗(yàn)證的技術(shù)路線,主要工作如下: 1、在查閱大量國(guó)內(nèi)外文獻(xiàn)的基礎(chǔ)上,對(duì)考慮土-樁-上部結(jié)構(gòu)相互作用的樁基地震響應(yīng)的理論研究、計(jì)算方法及試驗(yàn)進(jìn)展等研究現(xiàn)狀進(jìn)行了一定的總結(jié)和分析。 2、設(shè)計(jì)實(shí)現(xiàn)了PHC管樁-土-上部結(jié)構(gòu)相互作用體系的振動(dòng)臺(tái)試驗(yàn)。選定了層狀剪變形土箱作為乘土容器;地基土共有粘土、粉土、砂土三層;樁體模型有單樁、三樁、六樁三種,且六樁模型上部結(jié)構(gòu)兩次增加不同配重;輸入地震波有El Centro波、Taft波和人工波三種,且每種地震波有五種大小不同的加速度峰值強(qiáng)度。另外,每個(gè)模型還進(jìn)行了土體液化試驗(yàn)。 3、運(yùn)用大型計(jì)算軟件ABAQUS建立了PHC管樁-土-上部結(jié)構(gòu)相互作用體系的三維有限元計(jì)算模型,并進(jìn)行動(dòng)力計(jì)算分析。 (二)、對(duì)振動(dòng)臺(tái)模型試驗(yàn)數(shù)據(jù)進(jìn)行了綜合整理與分析,并和有限元計(jì)算結(jié)果進(jìn)行對(duì)比和驗(yàn)證。主要得到以下結(jié)論: 1、單樁以及三樁模型應(yīng)變均為樁頂最大,并沿樁體向下快速衰減,到距樁頂約6倍樁徑處,單樁應(yīng)變衰減了約80%-90%,三樁應(yīng)變衰減了55%-75%,再向下繼續(xù)逐步衰減直到樁底。 2、六樁模型在弱震作用下應(yīng)變?cè)跇俄斪畲?沿樁體向下較快衰減,到樁頂向下約6倍樁徑處,應(yīng)變衰減了35%-50%,再向下逐步衰減直至樁底,沿樁體存在2-3處應(yīng)變局部增大的突變點(diǎn),隨著震動(dòng)強(qiáng)度的增大,各突變點(diǎn)應(yīng)變快速增大,逐步超過(guò)樁頂,特別是樁頂向下約11倍樁徑處增大最突出,到強(qiáng)震工況,該處應(yīng)變成為最大。 3、隨著模型樁數(shù)增多,動(dòng)力響應(yīng)逐步減弱,樁體應(yīng)變及彎矩逐步降低,應(yīng)變與彎矩沿樁體分布更加線性,最大值與最小值之差逐步減小。三樁、六樁模型樁體最大拉應(yīng)變峰值分別比單樁模型下降10%-50%和40%-80%,最大彎矩峰值分別下降30%-55%和70%-80%,樁-土界面最大壓力分別下降約20%-70%和30%-80%,上部結(jié)構(gòu)橫向最大位移分別下降約6%-25%和15%~-40%。 4、單樁、三樁、六樁模型各樁體兩側(cè)應(yīng)變峰值分布規(guī)律并不對(duì)稱(chēng),特別是六樁模型樁體兩側(cè)應(yīng)變分布規(guī)律差異巨大。 5、隨著振動(dòng)持續(xù),土體自振頻率降低,阻尼增大;隨著震級(jí)增加,土-樁-結(jié)構(gòu)間的相互作用影響加強(qiáng),土體的非線性性質(zhì)增強(qiáng),但樁間土非線性性質(zhì)弱于樁側(cè)土,樁側(cè)土體非線性性質(zhì)又弱于遠(yuǎn)樁土體;多樁體系的震動(dòng)破壞現(xiàn)象遠(yuǎn)弱于少樁體系。 6、上部結(jié)構(gòu)重量逐步增大對(duì)結(jié)構(gòu)體系功力響應(yīng)、樁體應(yīng)變和彎矩大小及分布規(guī)律以及結(jié)構(gòu)橫向位移大小等的影響不是單向的,而是有著復(fù)雜的相互作用。 7、土體飽和狀態(tài)下,震動(dòng)造成砂土層液化,液化土體非線性性質(zhì)增強(qiáng),傳遞振動(dòng)的能力減弱,有一定的減震和隔震作用;土體液化后,樁體應(yīng)變和彎矩峰值總體普遍增大,沿樁體分布更線性;在液化土層,樁土界而接觸壓力大幅度降低;部分弱震工況,結(jié)構(gòu)橫向位移稍有減小,強(qiáng)震工況,結(jié)構(gòu)橫向位移普遍增大。 8、通過(guò)振動(dòng)臺(tái)模型試驗(yàn)結(jié)果與有限元計(jì)算結(jié)果的對(duì)比分析,驗(yàn)證了計(jì)算模型的合理性和振動(dòng)臺(tái)試驗(yàn)結(jié)果的可靠性。 9、初步確定PHC管樁在8度設(shè)防高烈度地區(qū)是可行的,值得進(jìn)一步研究。
[Abstract]:PHC pipe pile is a high - strength concrete pre - stressed pipe pile , because its hollow cross section is obviously weaker than the entity pile type of equal size in terms of rigidity and shear strength , the seismic capacity of PHC pipe pile is too weak . Therefore , the research on seismic response of PHC pipe pile is very necessary . Therefore , it is necessary to study the application of PHC pipe pile in high intensity area . In view of this subject , the research work of PHC pipe pile seismic response considering soil - pile - superstructure interaction is carried out . ( 1 ) adopting the technical scheme that the vibration table model test is main and the numerical calculation of the finite element is auxiliary , and the two are mutually authenticated , and the main work is as follows : 1 . Based on a large number of domestic and foreign literatures , this paper summarizes and analyzes the theoretical research , calculation method and experimental progress of pile foundation seismic response considering soil - pile - superstructure interaction . 2 . The design realizes the vibration table test of the interaction system of PHC pipe pile - soil - upper structure . The layered shear deformation soil box is selected as the soil taking container ; the foundation soil has three layers of clay , silt and sand ; the pile body model has three kinds of clay , silt and sandy soil ; the pile body model has three kinds of single pile , three piles and six piles , and the upper structure of the six pile model increases the different weights twice ; 3 . The three - dimensional finite element calculation model of PHC pipe pile - soil - upper structure interaction system is established by using the large - scale software of software , and the dynamic calculation analysis is carried out . ( 2 ) The vibration table model test data is comprehensively collated and analyzed , and compared and verified with the finite element calculation results . The following conclusions are mainly obtained : 1 . The strain of the single pile and the three pile models is the maximum of the pile top , and is rapidly attenuated along the pile body , the strain of the single pile is attenuated by about 80 % -90 % at the pile diameter of about 6 times from the top of the pile , the strain of the pile is attenuated by 55 % -75 % , and then the pile bottom is gradually attenuated downwards . 2 . Under the action of weak earthquake , the strain of the six pile model is maximum at the top of the pile , and the strain is attenuated by 35 % -50 % along the pile top down about 6 times the pile diameter . As the strength of the pile increases , the strain of each mutation point increases rapidly , which gradually exceeds the pile top , especially the pile top down about 11 times the pile diameter . 3 . With the increase of the number of piles , the dynamic response gradually decreases , the strain and bending moment of the pile body gradually decrease , the difference between the maximum value and the minimum value of the pile body decreases by 10 % -50 % and 40 % -80 % respectively , the maximum bending moment peak value decreases by 30 % -55 % and 70 % -80 % , the maximum pressure of the pile - soil interface decreases by about 20 % -70 % and 30 % -80 % , respectively , and the lateral maximum displacement of the upper structure is reduced by about 6 % -25 % and 15 % -40 % respectively . 4 . The distribution law of strain peak at both sides of the pile body of single pile , three pile and six pile model is not symmetrical , especially the difference of the strain distribution law on both sides of the pile body of the six pile model . 5 . As the vibration continues , the self - vibration frequency of the soil decreases and the damping increases . As the magnitude of the vibration increases , the interaction between the soil - pile - structure is strengthened , the non - linear nature of the soil is enhanced , but the nonlinear property of the soil between the piles is weaker than that of the pile - side soil , and the nonlinear property of the soil - side soil is weaker than that of the far - pile soil ; and the vibration damage phenomenon of the multi - pile system is far weaker than that of the less - pile system . 6 . The weight of the upper structure gradually increases the response of the structure system , the strain and bending moment of the pile body and the distribution law and the magnitude of the transverse displacement of the structure are not one - way , but have complex interaction . 7 . Under the saturated condition of the soil , the vibration causes liquefaction of the sand layer , the nonlinear property of the liquefaction soil is enhanced , the capacity of the transmission vibration is weakened , the distribution of the pile body is more linear , the strain and the bending moment peak of the pile body are generally increased along the distribution of the pile body , the contact pressure is greatly reduced along the liquefaction soil layer and the pile soil boundary , and the transverse displacement of the structure is slightly reduced , and the transverse displacement of the structure is generally increased . 8 . The rationality of the calculation model and the reliability of the vibration table test result are verified by comparing the results of the vibration table model test with the finite element calculation results . 9 . It is feasible to preliminarily determine the high intensity of PHC pipe pile in 8 - degree fortification intensity , and it is worth further study .
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TU473.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范敏,解明雨,鄔瑞鋒;土-樁-結(jié)構(gòu)相互作用體系的非線性地震反應(yīng)分析[J];地震工程與工程振動(dòng);1985年03期
2 呂西林,陳躍慶,陳波,黃煒,趙凌;結(jié)構(gòu)-地基動(dòng)力相互作用體系振動(dòng)臺(tái)模型試驗(yàn)研究[J];地震工程與工程振動(dòng);2000年04期
3 陳躍慶,呂西林,李培振,陳波,胡質(zhì)理;分層土─基礎(chǔ)─高層框架結(jié)構(gòu)相互作用體系振動(dòng)臺(tái)模型試驗(yàn)研究[J];地震工程與工程振動(dòng);2001年03期
4 呂西林,陳躍慶;高層建筑結(jié)構(gòu)-地基動(dòng)力相互作用效果的振動(dòng)臺(tái)試驗(yàn)對(duì)比研究[J];地震工程與工程振動(dòng);2002年02期
5 凌賢長(zhǎng),王東升;液化場(chǎng)地樁-土-橋梁結(jié)構(gòu)動(dòng)力相互作用振動(dòng)臺(tái)試驗(yàn)研究進(jìn)展[J];地震工程與工程振動(dòng);2002年04期
6 陳國(guó)興;莊海洋;程紹革;杜修力;李亮;;土-地鐵隧道動(dòng)力相互作用的大型振動(dòng)臺(tái)試驗(yàn):試驗(yàn)方案設(shè)計(jì)[J];地震工程與工程振動(dòng);2006年06期
7 陳國(guó)興;莊海洋;杜修力;李亮;程紹革;;土-地鐵車(chē)站結(jié)構(gòu)動(dòng)力相互作用大型振動(dòng)臺(tái)模型試驗(yàn)研究[J];地震工程與工程振動(dòng);2007年02期
8 陳國(guó)興;左熹;莊海洋;杜修力;;地鐵車(chē)站結(jié)構(gòu)大型振動(dòng)臺(tái)試驗(yàn)與數(shù)值模擬的比較研究[J];地震工程與工程振動(dòng);2008年01期
9 李培振;任紅梅;呂西林;程磊;;液化地基自由場(chǎng)振動(dòng)臺(tái)模型試驗(yàn)研究[J];地震工程與工程振動(dòng);2008年02期
10 姜忻良;徐炳偉;;復(fù)雜結(jié)構(gòu)-樁-土振動(dòng)臺(tái)模型試驗(yàn)數(shù)據(jù)分析[J];地震工程與工程振動(dòng);2009年06期
相關(guān)博士學(xué)位論文 前1條
1 徐炳偉;大型復(fù)雜結(jié)構(gòu)-樁-土振動(dòng)臺(tái)模型試驗(yàn)研究[D];天津大學(xué);2010年
,本文編號(hào):1463522
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1463522.html