天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 施工技術(shù)論文 >

基于模糊神經(jīng)網(wǎng)絡(luò)的供熱負(fù)荷預(yù)測的研究

發(fā)布時間:2018-01-04 05:03

  本文關(guān)鍵詞:基于模糊神經(jīng)網(wǎng)絡(luò)的供熱負(fù)荷預(yù)測的研究 出處:《青島理工大學(xué)》2013年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 集中供熱 模糊神經(jīng)網(wǎng)絡(luò) 負(fù)荷預(yù)測 預(yù)測控制


【摘要】:隨著我國經(jīng)濟(jì)的發(fā)展,供熱面積也在不斷地擴(kuò)大,供熱的能耗也不斷地增加。在我國三北地區(qū),僅供熱能耗這一項就占其總能耗的27.2%。此外,我國的能源的不斷耗竭以及自動控制技術(shù)的不斷發(fā)展,使得在供熱管網(wǎng)方面的投資也逐漸增加,供熱管網(wǎng)研究的重要性也在日益彰顯。由于集中供熱管網(wǎng)系統(tǒng)龐大性以及復(fù)雜性,精確的集中供熱系統(tǒng)熱負(fù)荷預(yù)測值對運(yùn)行效率的提高,以及環(huán)保和節(jié)能等方面都具有非常重要的意義。 本論文首先在對供熱負(fù)荷預(yù)測的特點(diǎn)和現(xiàn)狀總結(jié)的基礎(chǔ)上,分析了可能影響負(fù)荷的主要因素,對影響因素采用模糊量化的方式進(jìn)行研究處理,進(jìn)而提出在供熱負(fù)荷預(yù)測中應(yīng)用模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)。本系統(tǒng)的設(shè)計核心是BP神經(jīng)網(wǎng)絡(luò),即將模糊量化后的影響因素作為系統(tǒng)的輸入值,去調(diào)整神經(jīng)網(wǎng)絡(luò)的權(quán)值,從而得到預(yù)測的網(wǎng)絡(luò)模型。 確定預(yù)測模型的運(yùn)行參數(shù)后,運(yùn)用MATLAB7.0進(jìn)行預(yù)測仿真,,仿真結(jié)果表明,預(yù)測的結(jié)果能夠滿足要求,相對誤差在合理的范圍內(nèi),并且模糊神經(jīng)網(wǎng)絡(luò)算法比單純神經(jīng)網(wǎng)絡(luò)算法具有更好的預(yù)測精度,泛化能力更強(qiáng),從而能更好的提高了供熱品質(zhì),節(jié)約能源。 最后,在實現(xiàn)熱負(fù)荷預(yù)測的基礎(chǔ)上,對集中供熱預(yù)測控制進(jìn)行研究。從數(shù)學(xué)模型的角度來看,由于供熱系統(tǒng)的非線性的特點(diǎn),使得控制復(fù)雜性增加,本文對預(yù)測控制的必要性以及控制策略進(jìn)行了探討。
[Abstract]:With the development of our country ' s economy , the heating area is expanding constantly , and the energy consumption of heat supply is increasing continuously . In our country ' s three northern areas , only one item of heating energy consumption accounts for 27 . 2 % of its total energy consumption . In addition , our country ' s energy consumption and the continuous development of automatic control technology make the investment in the heating pipe network gradually increase . On the basis of summarizing the characteristics and present situation of heating load forecasting , this paper analyzes the main factors which may affect the load , carries out the research and treatment in the way of fuzzy quantification on the influencing factors , and puts forward the application of the fuzzy neural network system in the forecasting of heating load . The design core of the system is the BP neural network , and the influence factors after fuzzy quantization are used as input values of the system to adjust the weights of the neural networks to obtain the predicted network model . The simulation results show that the predicted results can meet the requirement and the relative error is within a reasonable range , and the fuzzy neural network algorithm has better prediction accuracy and generalization ability than the simple neural network algorithm , which can improve the heat supply quality and save energy . Finally , on the basis of realizing the thermal load forecasting , the central heating prediction control is studied . From the point of view of the mathematical model , the control complexity is increased due to the nonlinear characteristics of the heating system , and the necessity and control strategy of the predictive control are discussed .

【學(xué)位授予單位】:青島理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP183;TU995

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 諸靜,黃杭美;復(fù)雜系統(tǒng)的廣義預(yù)測模糊控制[J];電工技術(shù)學(xué)報;1997年02期

2 張沈生;孫曉兵;傅卓林;;國外供暖方式現(xiàn)狀與發(fā)展趨勢[J];工業(yè)技術(shù)經(jīng)濟(jì);2006年07期

3 常兆亮;;城市集中供熱存在的優(yōu)勢及可行性分析[J];黑龍江科技信息;2009年34期

4 付任宇;;城市集中供熱存在的優(yōu)勢分析[J];黑龍江科技信息;2011年19期

5 郝有志,李德英;熱負(fù)荷預(yù)測方法評析[J];建筑熱能通風(fēng)空調(diào);2003年01期

6 王彥敏;;集中供熱系統(tǒng)中的節(jié)能措施研究[J];科技傳播;2009年05期

7 袁閃閃;田U

本文編號:1377135


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1377135.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3da75***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com