天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于機(jī)器學(xué)習(xí)的軟件故障預(yù)測(cè)

發(fā)布時(shí)間:2021-12-25 05:43
  用于軟件測(cè)試的資源通常是有限的,但是軟件測(cè)試往往需要消耗大量費(fèi)時(shí)昂貴的軟件模塊。此外,由于軟件開發(fā)過程中測(cè)試往往并不充分,導(dǎo)致傳統(tǒng)的軟件測(cè)試手段并不足以保證軟件的質(zhì)量。因此,早期軟件產(chǎn)業(yè)發(fā)展階段中的軟件故障自動(dòng)預(yù)測(cè)技術(shù)在當(dāng)前仍然存在,F(xiàn)今軟件故障預(yù)測(cè)主要用于設(shè)定與優(yōu)化軟件測(cè)試的優(yōu)先級(jí),以充分利用有限的測(cè)試資源并盡可能地提升軟件質(zhì)量。在這方面,機(jī)器學(xué)習(xí)方法得到了較為廣泛的應(yīng)用。然而,將機(jī)器學(xué)習(xí)方法應(yīng)用于精確的軟件故障預(yù)測(cè)對(duì)數(shù)據(jù)質(zhì)量有較高的要求。遺憾的是,真實(shí)的數(shù)據(jù)集卻質(zhì)量欠佳。在軟件故障預(yù)測(cè)中,人們可以借助已標(biāo)注的實(shí)例來構(gòu)建一個(gè)模型以預(yù)測(cè)迄今尚未發(fā)現(xiàn)的新實(shí)例的類別。如果用于訓(xùn)練預(yù)測(cè)模型的數(shù)據(jù)集受到污染,則會(huì)給訓(xùn)練階段和最終得到的模型都帶來不利影響。一個(gè)可預(yù)期的結(jié)果是最終得到的模型精度必然不高。因此,提升數(shù)據(jù)集質(zhì)量的一個(gè)有效策略是對(duì)帶有缺陷數(shù)據(jù)的數(shù)據(jù)集進(jìn)行清洗,主要是通過偵測(cè)數(shù)據(jù)集中可能存在的問題并消除這些問題來實(shí)現(xiàn)的。通過對(duì)現(xiàn)有軟件故障預(yù)測(cè)領(lǐng)域相關(guān)文獻(xiàn)的綜述我們發(fā)現(xiàn),分類在此領(lǐng)域中的大多數(shù)場(chǎng)合有著不可替代的重要作用。在一些特殊的場(chǎng)合,一些輔助的策略在應(yīng)對(duì)數(shù)據(jù)質(zhì)量挑戰(zhàn)中也不可或缺。一些無足... 

【文章來源】:西南交通大學(xué)四川省 211工程院校 教育部直屬院校

【文章頁數(shù)】:126 頁

【學(xué)位級(jí)別】:博士

【文章目錄】:
摘要
Abstract
List of Abbreviations
List of Symbols
1 Introduction
    1.1 Background
    1.2 Data Quality and Software Fault Prediction
    1.3 Motivation
    1.4 Dissertation Objectives
    1.5 Research Significance
    1.6 Dissertation Outline
2 Related Work
    2.1 Software Testing.
    2.2 Software Testing Goal
    2.3 Software Fault Prediction
        2.3.1 Common Software Fault Prediction Process
        2.3.2 Machine Learning Application in Software Fault Prediction
        2.3.3 Software Metrics
    2.4 Data Quality Challenges
        2.4.1 High Dimensionality
        2.4.2 Class Imbalance Problem.
        2.4.3 Noise Filtering
        2.4.4 Instance Selection
        2.4.5 Outlier Analysis
    2.5 Model Validation Techniques
    2.6 Performance Evaluation Metrics
    2.7 Summary
3 A Combined-Learning Based Framework for Improved Software Fault Prediction
    3.1 Overview
    3.2 Hypothesis
    3.3 Combined-Learning Based Framework
        3.3.1 Software Metrics
        3.3.2 Feature Selection Techniques
        3.3.3 Data Balancing
    3.4 Experimental Design
    3.5 Analysis and Discussions
        3.5.1 Classification Performance on mc1 SCM
        3.5.2 Classification Performance on jm1 SCM
        3.5.3 Classification Performance on camel-1.6 OOM
        3.5.4 Classification Performance on prop-4 OOM
        3.5.5 Classification Performance on ComML and ComLC Metrics
        3.5.6 Comparison:SCM and OOM
    3.6 Summary
4 A Three-Stage Based Ensemble Learning for Improved Software Fault Prediction
    4.1 Overview
    4.2 Three-Stage Based Ensemble Learning Framework
        4.2.1 Stage One:Information Gain Based Feature Filtering
        4.2.2 Stage Two:Synthetic Faulty Prone Over-sampling Based Data Sampling
        4.2.3 Stage Three:Fusion of Classifiers Strategy Based Noise Filtering
    4.3 Experimental Design
    4.4 Analysis and Discussions
        4.4.1 Performance in Stage One
        4.4.2 Performance in Stage Two
        4.4.3 Performance in Stage Three
        4.4.4 Multiple Comparison of Three-Stages Using Different Performance Met-rics
    4.5 Summary
5 Software Fault Prediction Using Hybrid Data Reduction Approaches
    5.1 Overview
    5.2 Hybrid Data Reduction Based Framework
        5.2.1 Instance Selection
        5.2.2 Outlier Analysis
    5.3 Experimental Design
    5.4 Analysis and Discussions
        5.4.1 Performance of Single Data Reduction Approach
        5.4.2 Performance of Two-Hybridized Data Reduction Approaches
        5.4.3 Performance of Three-Hybridized Data Reduction Approaches
        5.4.4 Multiple Comparison and Statistical Test of Eleven Data Reduction Ap-proaches
    5.5 Summary
6 Conclusions and Future Works
    6.1 Conclusions
    6.2 Future Works
Acknowledgements
References
List of Publications
Research Fundings



本文編號(hào):3551891

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/3551891.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶49f8f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产精品视频一级香蕉| 中文字幕精品人妻一区| 东京热男人的天堂久久综合| 国产日韩欧美综合视频| 后入美臀少妇一区二区| 欧美日韩一区二区综合| 中文字幕精品一区二区三| 国产真人无遮挡免费视频一区| 亚洲一区二区三区在线中文字幕| 日韩1区二区三区麻豆| 免费观看日韩一级黄色大片| 五月综合激情婷婷丁香| 亚洲中文字幕视频在线观看| 日本不卡在线视频中文国产 | 超碰在线播放国产精品| 日韩成人午夜福利免费视频| 人妻内射在线二区一区| 亚洲一区二区三区av高清| 亚洲午夜福利视频在线| 欧美视频在线观看一区| 亚洲成人免费天堂诱惑| 亚洲男女性生活免费视频| 欧美日韩国产精品自在自线| 日本人妻中出在线观看| 亚洲熟女精品一区二区成人| 午夜精品一区二区三区国产| 国产av乱了乱了一区二区三区| 欧美欧美日韩综合一区| 久久精视频免费视频观看| 亚洲国产av一二三区| 成人午夜视频在线播放| 中文字幕乱码亚洲三区| 黑丝国产精品一区二区| 国产精品日韩精品一区| 最新日韩精品一推荐日韩精品| 亚洲视频在线观看免费中文字幕 | 国产av一二三区在线观看| 日本精品中文字幕人妻| 午夜视频成人在线免费| 中文字幕久热精品视频在线 | 亚洲欧美日韩精品永久|