基于廣義里奇曲率的圖像采樣和重建
[Abstract]:Image sampling is an important subject in computer graphics. Nowadays, many classical sampling theories and methods have been produced. The extensive demand of image storage and processing technology drives the development of signal sampling to image sampling. In the classical Shannon sampling theory, the sampling frequency limit is given to preserve the complete information of discrete signal. In more complex image sampling, the sampling frequency is not guaranteed in the limitation of storage space and computational complexity. So there are many more reasonable image sampling methods. The classical method based on one-dimensional signal sampling can be used for 2-D image sampling, such as uniform sampling, blue noise sampling, geometric feature matching sampling and so on. They all distribute sampling points in the image coordinates, effectively utilize the characteristics of image gradient and saliency, and improve the sampling efficiency. In the theory of non-uniform sampling, Shannon points out that the non-uniform sampling method satisfies the threshold of average sampling frequency. It can also save the complete information of the original signal, so the non-uniform sampling method can make full use of the image features and then save the image information. In this paper, an image sampling method based on blue noise is introduced. The grayscale image is regarded as a density manifold and sampled by referring to the generalized Ritchie curvature definition. Similar sampling has been proposed by predecessors, but on the basis of it, we have extended it more and introduced the characteristic calculation of discrete Hessian matrix. The ideas and results of this method are also widely used in image and graphics processing. In this paper, it is applied to many kinds of images, such as nature, depth, cartoon and so on, and compared with other sampling methods, it shows the superiority of this algorithm in sampling result and reducing result. Further experiments show that the sampling method is still feasible and can be extended to high-dimensional images, and further application will be carried out in the future scientific research work.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前9條
1 王琳;高佳宏;林曉凡;李平;謝東升;;遠(yuǎn)程無線監(jiān)控系統(tǒng)中基于CMOS傳感器VS6624的圖像采樣模塊設(shè)計[J];現(xiàn)代電子技術(shù);2007年20期
2 王佳寧;;圖像采樣系統(tǒng)中常用的數(shù)學(xué)變換與矩陣[J];考試周刊;2011年45期
3 ;如何判斷Super CCD提高圖像采樣的能力[J];電子測試;2001年04期
4 田地,于前洋,李艷平;電子探針圖像的非等間距采樣技術(shù)[J];儀器儀表學(xué)報;2001年04期
5 陳學(xué)峰,周榮政,洪志良;一種百萬像素CCD圖像采樣接口電路的設(shè)計與實現(xiàn)[J];微電子學(xué);2003年04期
6 吳仁育,王國棟,烏日圖,李曉奇;機器人電弧焊接跟蹤的圖像采樣及快速處理[J];測試技術(shù)學(xué)報;1994年S1期
7 鮑溪清;基于多尺度區(qū)域網(wǎng)格的公路車輛自動檢測識別[J];大連鐵道學(xué)院學(xué)報;2004年04期
8 高靜靜;張菁;沈蘭蓀;;視覺注意力模型的改進算法[J];電子測量技術(shù);2008年03期
9 ;[J];;年期
相關(guān)博士學(xué)位論文 前2條
1 戴曉龍;基于DCT-Ⅱ系數(shù)的圖像采樣率變換的算法研究及其結(jié)構(gòu)設(shè)計[D];復(fù)旦大學(xué);2003年
2 李雪梅;圖像采樣的逆向求解及其在三維表示中的應(yīng)用研究[D];山東大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 林樹;基于廣義里奇曲率的圖像采樣和重建[D];大連理工大學(xué);2016年
2 祁樂;基于壓縮感知理論的圖像采樣和重構(gòu)[D];大連理工大學(xué);2011年
,本文編號:2315967
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2315967.html