基于人臉識別的礦井人員管理技術(shù)研究
[Abstract]:Our country is a big country of coal production, the management of coal mine personnel occupies a very important position in coal mine safety production. Therefore, it is of great significance to introduce the biometric method to identify the identity of mine personnel and to study the safety management system of mine personnel. Based on the application of face recognition technology in mine personnel management system, this paper analyzes the existing mine personnel management system, personnel identity accurate management technology, The feasibility of the application of face recognition technology and face recognition technology in mine personnel management. This paper introduces the commonly used face detection and recognition algorithms, and selects the face detection and recognition algorithm by analyzing the characteristics of mine face image. Aiming at the noise existing in image transmission, the median and homomorphic filtering method is used to pre-process the image, eliminate the isolated noise in image transmission, and enhance the contrast of image. The method of Canny edge detection is used to extract the contour features of mining cap and face, and face detection is carried out according to the contour features. Experiments show that the face detection algorithm is accurate and suitable for face detection of mine personnel. The principle and implementation of principal component analysis (PCA) are introduced in this paper. The feature extraction of face image is carried out by principal component analysis (PCA), which reduces the complexity of image processing and facilitates face recognition. The face recognition model of depth belief network is established, and the improved face recognition model is established by combining principal component analysis and depth belief network algorithm. The simulation experiment is carried out in ORL,FLW face database. The comparative analysis shows that the face recognition model based on PCA depth belief network has high recognition speed and recognition rate. The man-machine interface of mine personnel face recognition is designed, and the functions of face image collection, face detection, face recognition and human information display are realized. After testing, the principal component analysis (PCA) depth belief network face recognition algorithm is accurate for the tested face image detection and recognition, and complements the attendance management technology of mine personnel. It has important reference value in practical application. It has certain guiding significance for the further improvement of mine personnel safety management system.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD76;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;《中國煤炭工業(yè)改革發(fā)展年度報(bào)告》(2016年度)發(fā)布[J];中國煤炭;2017年02期
2 ;我國煤炭消費(fèi)量占世界一半——2015年全國產(chǎn)量達(dá)37.5億噸[J];辦公自動(dòng)化;2017年01期
3 楊巨成;劉娜;房珊珊;謝迎;;基于深度學(xué)習(xí)的人臉識別方法研究綜述[J];天津科技大學(xué)學(xué)報(bào);2016年06期
4 胡月;沈永良;;深度學(xué)習(xí)模型與成對分類相結(jié)合的人臉識別新算法[J];黑龍江大學(xué)工程學(xué)報(bào);2016年03期
5 曾璐;魯海榮;羅璐;楊國亮;;基于RPCA與低秩投影的有遮擋人臉識別[J];計(jì)算機(jī)仿真;2015年10期
6 趙士偉;張如彩;王月明;張暉;;生物特征識別技術(shù)綜述[J];中國安防;2015年07期
7 陳立潮;張秀琴;潘理虎;李博;;煤礦考勤系統(tǒng)中人臉識別算法的研究[J];工礦自動(dòng)化;2015年04期
8 李晨鑫;;煤礦入井人員唯一性檢測技術(shù)研究[J];工礦自動(dòng)化;2014年11期
9 郭為民;;礦井人員管理系統(tǒng)入井檢測技術(shù)分析[J];煤炭科技;2014年02期
10 馮玉涵;;BP神經(jīng)網(wǎng)絡(luò)在人臉識別中的應(yīng)用研究[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2014年02期
相關(guān)會議論文 前1條
1 嚴(yán)嚴(yán);章毓晉;;基于一維相關(guān)濾波器的類依賴特征分析人臉識別[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 趙明;;漢柏科技進(jìn)軍人臉識別領(lǐng)域[N];中國計(jì)算機(jī)報(bào);2017年
相關(guān)碩士學(xué)位論文 前2條
1 張百運(yùn);礦用數(shù)字網(wǎng)絡(luò)廣播系統(tǒng)研究[D];西安科技大學(xué);2016年
2 雍峰;面向企業(yè)管理的云計(jì)算服務(wù)模式分析和應(yīng)用[D];天津大學(xué);2014年
,本文編號:2312165
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2312165.html