微博用戶個(gè)性化標(biāo)簽提取技術(shù)研究
[Abstract]:Weibo user tags can reflect the characteristics of users, user preferences and other information, and user tags to the user advertising recommendation, user clustering, user search and so on have a certain potential value. In this paper, the personality of Weibo user personalized tag contains two meanings, one is that the tag can reflect the personalized characteristics of the user, the other is that the tag itself contains the corresponding personalized features. Tags reflect the degree of personalized features of the user this paper compares with the tags extracted by the user manually. The personalized features contained in the tags refer to the further classification of the tags. Make the user's tags with common attributes, to facilitate the user to find, clustering, and so on. In this paper, we find out that there are three basic types of tags in user self-removal tags, which are called basic label, classified label, concern label, and then the characteristics of each basic type tag are studied respectively. According to the characteristics of each basic type label, the corresponding extraction method is designed, and then according to the relationship between the three basic type tags, how to integrate the three labels together to get a better response to the personalized features of the user tags. Therefore, in this paper, there are seven kinds of tag extraction methods involved in the process of user personalized tag extraction, three of which are based on tags, the other four are mixed tags between these three basic types of tags. Except for the existing TextRank algorithm which is used to extract the basic label in the basic type tag, the other six label extraction methods are all proposed in this paper. Through the final verification experiment, it is found that the mixed tag extraction effect of the three basic types of tags is the best. Therefore, the user tag extraction method studied in this paper has improved the effect of user personalized tag extraction. In addition, after further classifying the extracted user personalized tags, this paper makes Weibo user tags with more common information, which also brings certain benefits to user clustering, user classification, user search, and so on. Make user label's application scope more extensive.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP393.092;TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王翠英;;標(biāo)簽的聚類(lèi)分析研究[J];現(xiàn)代圖書(shū)情報(bào)技術(shù);2008年05期
2 林茜卡;傅秀芬;滕少華;李云;;協(xié)同標(biāo)簽系統(tǒng)的應(yīng)用研究[J];暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版);2009年01期
3 吳超;周波;;基于復(fù)雜網(wǎng)絡(luò)的社會(huì)化標(biāo)簽分析[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2010年11期
4 吳金成;曹嬌;趙文棟;張磊;;標(biāo)簽集中式發(fā)布訂閱機(jī)制性能分析[J];指揮控制與仿真;2010年06期
5 李曉燕;陳剛;壽黎但;董金祥;;一種面向協(xié)作標(biāo)簽系統(tǒng)的圖片檢索聚類(lèi)方法[J];中國(guó)圖象圖形學(xué)報(bào);2010年11期
6 袁柳;張龍波;;基于概率主題模型的標(biāo)簽預(yù)測(cè)[J];計(jì)算機(jī)科學(xué);2011年07期
7 張斌;張引;高克寧;郭朋偉;孫達(dá)明;;融合關(guān)系與內(nèi)容分析的社會(huì)標(biāo)簽推薦[J];軟件學(xué)報(bào);2012年03期
8 王永剛;嚴(yán)寒冰;許俊峰;胡建斌;陳鐘;;垃圾標(biāo)簽的抵御方法研究[J];計(jì)算機(jī)研究與發(fā)展;2013年10期
9 汪祥;賈焰;周斌;陳儒華;韓毅;;基于交互關(guān)系的微博用戶標(biāo)簽預(yù)測(cè)[J];計(jì)算機(jī)工程與科學(xué);2013年10期
10 顧亦然;陳敏;;一種三部圖網(wǎng)絡(luò)中標(biāo)簽時(shí)間加權(quán)的推薦方法[J];計(jì)算機(jī)科學(xué);2012年08期
相關(guān)會(huì)議論文 前6條
1 朱廣飛;董超;王衡;汪國(guó)平;;照片標(biāo)簽的智能化管理[A];第四屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議論文集[C];2008年
2 房冠南;袁彩霞;王小捷;李江;宋占江;;面向?qū)υ捳Z(yǔ)料的標(biāo)簽推薦[A];中國(guó)計(jì)算語(yǔ)言學(xué)研究前沿進(jìn)展(2009-2011)[C];2011年
3 梅放;林鴻飛;;基于社會(huì)化標(biāo)簽的移動(dòng)音樂(lè)檢索[A];第五屆全國(guó)信息檢索學(xué)術(shù)會(huì)議論文集[C];2009年
4 李靜;林鴻飛;;基于用戶情感標(biāo)簽的音樂(lè)檢索算法[A];第六屆全國(guó)信息檢索學(xué)術(shù)會(huì)議論文集[C];2010年
5 駱雄武;萬(wàn)小軍;楊建武;吳於茜;;基于后綴樹(shù)的Web檢索結(jié)果聚類(lèi)標(biāo)簽生成方法[A];第四屆全國(guó)信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議論文集(上)[C];2008年
6 王波;唐常杰;段磊;尹佳;左R,
本文編號(hào):2309739
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2309739.html