基于中心對(duì)稱LBP算子的虹膜識(shí)別改進(jìn)算法研究
[Abstract]:In recent years, biometric technology has become more and more popular. Biometric recognition is based on the unique characteristics of the human body, including iris, fingerprints, palmprint, DNA and walking gait. Compared with other biological characteristics iris has been paid more and more attention by academia and business circles because of its uniqueness invariance anti-counterfeiting and inviolability. So iris payment can become the new direction of future payment. In this paper, the iris recognition in biometrics is taken as the main line, the main process of image processing in iris recognition algorithm is described in detail, and the algorithm of iris location and feature extraction is improved. The main work of this paper is as follows: (1) the meaning of biometrics, the characteristic contents, advantages and disadvantages of biometrics, the structure of iris and several indexes to judge iris recognition performance are introduced. It is described in detail that the database CASIA-Iris V4.CASIA-Iris V4 used in this paper contains six different subdatabases. The collection equipment, object and environment of each database are different. A concise description of the objects and conditions required for a complete iris payment system is given. (2) in iris location, the outer edge of the iris is broadly defined. An edge detection algorithm based on boundary gradient enhancement is proposed. In this paper, the inner iris edge is extracted by binary image, and then the outer iris edge is extracted by combining the edge gradient enhancement algorithm with the Canny operator. The method of least square circle fitting is used to fit the extracted inner and outer boundaries. (3) in the process of iris feature extraction and matching, the traditional LBP operator is first explained. The LBP rotation invariant mode and the LBP equivalent mode derived from traditional LBP are also introduced. On the basis of point (2), the improved centrosymmetric LBP operator is used to extract the features, and the coding method of the center-symmetric LBP operator is discussed. The improved centrosymmetric LBP operator can not only greatly reduce the memory consumption. Moreover, the rate of feature extraction was significantly increased. In the final match, the algorithm based on hamming distance is used to compare the image to be tested with the image stored in the database.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王祥;陳莉;;基于梯度邊緣增強(qiáng)和極小值填充的分水嶺分割算法[J];電腦知識(shí)與技術(shù);2016年27期
2 肖強(qiáng);尚巖;王春莉;張卓群;;虹膜識(shí)別技術(shù)國(guó)內(nèi)外現(xiàn)狀及對(duì)青島市的發(fā)展建議[J];高科技與產(chǎn)業(yè)化;2016年04期
3 周海珍;熊登峰;;關(guān)于直方圖均衡化算法在圖像灰度處理中的應(yīng)用研究[J];科技創(chuàng)新與應(yīng)用;2015年32期
4 張偉;;移動(dòng)支付新方式[J];百科知識(shí);2015年14期
5 吳祥鳳;;顛覆傳統(tǒng)支付模式,開啟生物支付新模式[J];時(shí)代金融;2015年06期
6 霍君;;基于LBP算子的虹膜特征提取方法[J];電子質(zhì)量;2014年03期
7 李歡利;郭立紅;李小明;王心醉;董月芳;;基于統(tǒng)計(jì)特征中心對(duì)稱局部二值模式的虹膜識(shí)別[J];光學(xué)精密工程;2013年08期
8 吳成茂;;直方圖均衡化的數(shù)學(xué)模型研究[J];電子學(xué)報(bào);2013年03期
9 金秋春;童小利;;基于改進(jìn)LBP的虹膜識(shí)別方法[J];軟件導(dǎo)刊;2012年08期
10 張鐸;;物聯(lián)網(wǎng)物品標(biāo)識(shí)體系與自動(dòng)識(shí)別技術(shù)[J];中國(guó)自動(dòng)識(shí)別技術(shù);2012年01期
相關(guān)博士學(xué)位論文 前2條
1 袁曉燕;虹膜定位、形變及特征提取研究[D];上海交通大學(xué);2008年
2 程宇奇;用于身份鑒別的虹膜識(shí)別算法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2010年
相關(guān)碩士學(xué)位論文 前4條
1 朱秋雙;基于改進(jìn)LBP的人臉識(shí)別算法研究[D];南京郵電大學(xué);2015年
2 向維輝;基于Gabor濾波的完備CS-LBP算子圖像紋理特征提取算法研究[D];昆明理工大學(xué);2015年
3 徐國(guó)靖;基于形態(tài)學(xué)梯度的圖像邊緣檢測(cè)算法[D];西安電子科技大學(xué);2013年
4 楊昌盛;虹膜圖像預(yù)處理及關(guān)鍵點(diǎn)提取方法的研究[D];中南大學(xué);2009年
,本文編號(hào):2308507
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2308507.html