基于評分選取技術(shù)的推薦算法研究
[Abstract]:Recommendation system has become one of the most important information filtering tools in big data era. It can help users quickly locate valuable information from massive data and recommend it to users in the form of lists of items that may be of interest to users. The explosive amount of information on the Internet and the rapid growth of the number of users and items make the recommendation system face many challenges, of which scalability is one of the main challenges. Collaborative filtering is the most successful and widely used technology in the field of recommendation system. At present, in order to improve the scalability of collaborative filtering algorithms, many scholars have proposed many schemes based on clustering and parallel technology. Usually, they use all the user rating data in the modeling phase of the recommendation algorithm, without considering the quality factors of the data, and most of the existing papers focus on the scalability of the collaborative filtering algorithm based on the nearest neighbor. From the point of view of input source dataset, this paper puts forward the point of view: not all user behavior data make the same contribution to the final prediction model, especially for those active users who have a large number of behaviors. This paper holds that for active users, some representative behavioral data can already contain enough information to model users accurately and get a good recommended result in a shorter time. Based on the above viewpoint, this paper first explores the relationship between the number of user behaviors and the performance of the recommendation algorithm in the modeling phase of the recommendation algorithm through a series of experiments, and proposes a recommendation algorithm based on the selection of the score. In particular, all experiments in this paper considered both score prediction and TopN recommendation tasks. Then, this paper proposes a general scoring selection framework that considers both user and movie factors, and proposes three scoring selection strategies based on division and five scoring selection strategies based on statistics and information theory. To select the most representative score for each user. Finally, a large number of experiments have been done on MovieLens and Netflix datasets. The experimental results show that only using some representative behaviors of active users can reduce the running time of the algorithm while achieving the expected recommendation accuracy. This improves the scalability of the recommendation system, and the proposed scheme is suitable for all collaborative filtering algorithms.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李穎基,彭宏,鄭啟倫,曾煒;自動分層推薦算法[J];計(jì)算機(jī)應(yīng)用;2002年11期
2 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
3 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
4 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
5 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
6 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
7 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
8 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
9 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評價估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
10 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2305040
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2305040.html