基于校園資源云的Spark圖書推薦技術(shù)的研究
[Abstract]:With the development of information construction in colleges and universities, the construction of campus cloud platform has become the focus of attention. The construction of campus resource cloud platform can meet and protect the needs of the school in all aspects, and provide an efficient and reliable computing storage platform for the analysis of campus big data. The research of this topic depends on the campus resource cloud platform. Because of this also obtained the strong information infrastructure support. At the same time, the extensive application of various business management information systems makes the data accumulate continuously. Among them, the library management application system accumulates a large number of historical data of the circulation of books, and with the development of time, the data in the system is increasing. And there's a lot of valuable information lurking behind these data. In order to make full use of the library book circulation data and improve the information experience of teachers and students, this paper makes a deeper analysis and research on it, so that teachers and students can get personalized book recommendation service. In this paper, the cloud platform of campus resources is first calculated, storage resources and platform functions are designed, then the cloud platform is used as the test and running platform of book recommendation, on which Spark cluster is built, HDFS as storage system and Spark as computing platform. This paper studies the technology of book recommendation. In order to solve the problem of missing data and data form, this paper preprocesses the original data and constructs the user-book scoring matrix. In order to solve the problem of data sparsity, this paper adopts the cooperative filtering algorithm of ALS matrix decomposition, and then integrates K-Means clustering algorithm into ALS matrix decomposition algorithm to solve the cold start problem of users. Aiming at the problem of attribute weight and initial value of K-Means algorithm, the weighted Euclidean distance and the maximum minimum algorithm are used to optimize the algorithm. Finally, the algorithm is implemented on Spark, and the experiment is designed to verify the implementation of personalized book recommendation for different users. Through experiments, the optimal parameters of ALS matrix decomposition algorithm are determined. It is proved that the proposed hybrid recommendation algorithm can solve the problem of data sparsity and cold start, and the optimization of K-Means algorithm can improve the clustering effect. The integration of clustering algorithm improves the prediction accuracy and computing speed. Finally, the advantage of Spark cluster is verified by parallel computing speedup on Spark platform.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳金李;張建明;;基于二分K-means的協(xié)同過濾推薦算法[J];軟件導(dǎo)刊;2017年01期
2 董文俊;李艷;郎建華;張晨;沐士光;;云計(jì)算背景下的云存儲(chǔ)服務(wù)研究[J];中小企業(yè)管理與科技(上旬刊);2016年08期
3 李東興;;虛擬化技術(shù)及其在數(shù)據(jù)中心的應(yīng)用研究[J];中國教育技術(shù)裝備;2015年10期
4 李彥廣;;基于Spark+MLlib分布式學(xué)習(xí)算法的研究[J];商洛學(xué)院學(xué)報(bào);2015年02期
5 朱揚(yáng)勇;孫婧;;推薦系統(tǒng)研究進(jìn)展[J];計(jì)算機(jī)科學(xué)與探索;2015年05期
6 閆曉麗;;云計(jì)算安全問題[J];信息安全與技術(shù);2014年03期
7 曹磊;;世界云服務(wù)市場發(fā)展趨勢(shì)研究[J];競爭情報(bào);2013年03期
8 Jun Li;Baochun Li;;Erasure Coding for Cloud Storage Systems: A Survey[J];Tsinghua Science and Technology;2013年03期
9 龔強(qiáng);;當(dāng)代云計(jì)算發(fā)展研究現(xiàn)狀[J];測繪與空間地理信息;2013年05期
10 張建莉;;云存儲(chǔ)技術(shù)在高校信息化建設(shè)中的應(yīng)用分析[J];科技視界;2012年28期
相關(guān)博士學(xué)位論文 前1條
1 黎明;云計(jì)算資源管理關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 徐江輝;基于Hadoop的聚類協(xié)同過濾推薦算法研究及應(yīng)用[D];湖南大學(xué);2016年
2 陳傳瑜;基于聚類的協(xié)同過濾推薦算法研究[D];廣東工業(yè)大學(xué);2016年
3 楊志偉;基于Spark平臺(tái)推薦系統(tǒng)研究[D];中國科學(xué)技術(shù)大學(xué);2015年
4 王一霈;分布式全文檢索系統(tǒng)中索引平臺(tái)和信息過濾的研究與應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2015年
5 李文棟;基于Spark的大數(shù)據(jù)挖掘技術(shù)的研究與實(shí)現(xiàn)[D];山東大學(xué);2015年
6 胡于響;基于Spark的推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];浙江大學(xué);2015年
7 謝歡;大數(shù)據(jù)挖掘中的并行算法研究及應(yīng)用[D];電子科技大學(xué);2015年
8 孫科;基于Spark的機(jī)器學(xué)習(xí)應(yīng)用框架研究與實(shí)現(xiàn)[D];上海交通大學(xué);2015年
9 王琪;基于聚類的商品推薦算法的研究與應(yīng)用[D];北京交通大學(xué);2014年
10 陳天昊;互聯(lián)網(wǎng)電影推薦方法的研究與實(shí)現(xiàn)[D];中國科學(xué)技術(shù)大學(xué);2014年
,本文編號(hào):2302976
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2302976.html