社交網(wǎng)絡好友推薦系統(tǒng)的設計與實現(xiàn)
[Abstract]:With the rapid development of the Internet, people's access to information is more and more inclined to the Internet, and the way to make friends is also extended to the social network. The essence of social communication is the communication between people. Each user in social network has his own social circle, and through this social circle, information transmission, sharing and communication are realized. However, with the development of the Internet and the evolution of the social network, the user group in the social network is gradually huge, the relationship between users is becoming more and more complex, and the amount of data generated by the users is more and more. All these factors make it more difficult for users to find friends with similar interests and establish their own social circle. In this context, the friend recommendation system emerges as the times require, and recommends "friends" with similar interests to the target users. Taking Weibo, a typical social network, as the research object, this paper designs and implements the friend recommendation system of social network. Firstly, we collect and preprocess the user data of Weibo, and obtain the useful data for the system design and implementation. Secondly, the LDA thematic model is used to analyze the Weibo content of the user, and then the user theme distribution information is obtained, and the interest preference of the user is calculated and expressed according to these thematic distribution information. Thirdly, according to the cosine similarity measure method, the similarity between different users' interests is calculated, and N users with the largest similarity to the target user are selected as the friend recommendation results to present to the target user. Finally, the accuracy index is used to evaluate the friend recommendation system, which verifies the improvement of recommendation accuracy. Compared with the traditional friend recommendation system based on user's personalized label, educational background or geographical location, the friend recommendation system proposed in this paper, through analyzing Weibo user's historical Weibo data, excavates user's interest. Therefore, the description of user's interest is more representative, and the recommendation result presented to the user is more in line with the standard of "like-minded".
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.3
【參考文獻】
相關期刊論文 前10條
1 向程冠;熊世桓;王東;;基于關聯(lián)規(guī)則的社交網(wǎng)絡好友推薦算法[J];中國科技論文;2014年01期
2 劉傳振;;社會網(wǎng)絡服務中好友推薦算法研究[J];科技傳播;2013年19期
3 于海群;劉萬軍;邱云飛;;基于用戶偏好的社會網(wǎng)絡二級人脈推薦研究[J];計算機應用與軟件;2012年04期
4 俞琰;邱廣華;陳愛萍;;基于混合圖的在線社交網(wǎng)絡朋友推薦算法[J];現(xiàn)代圖書情報技術;2011年11期
5 孫立偉;何國輝;吳禮發(fā);;網(wǎng)絡爬蟲技術的研究[J];電腦知識與技術;2010年15期
6 張宇;劉雨東;計釗;;向量相似度測度方法[J];聲學技術;2009年04期
7 王賢君;;信息冗余現(xiàn)象及對策探析[J];教育與職業(yè);2005年36期
8 林淵淵;互聯(lián)網(wǎng)信息冗余現(xiàn)象[J];當代傳播;2004年05期
9 張東禮,汪東升,鄭緯民;基于VSM的中文文本分類系統(tǒng)的設計與實現(xiàn)[J];清華大學學報(自然科學版);2003年09期
10 傅賽香,袁鼎榮,黃柏雄,鐘智;基于統(tǒng)計的無詞典分詞方法[J];廣西科學院學報;2002年04期
相關碩士學位論文 前10條
1 奉珊;社交網(wǎng)絡的好友推薦算法研究[D];北京郵電大學;2015年
2 劉英;基于用戶評論的個性化產品推薦系統(tǒng)[D];北京郵電大學;2015年
3 王星;基于Labeled LDA的微博用戶興趣識別系統(tǒng)的研究與實現(xiàn)[D];北京交通大學;2014年
4 方正;微博短文本分析技術研究及應用[D];電子科技大學;2014年
5 董星;基于Labeled-LDA的文本分類研究與實現(xiàn)[D];北京郵電大學;2014年
6 楊紅磊;基于內容與社會過濾的好友推薦算法研究[D];內蒙古科技大學;2013年
7 趙茉莉;網(wǎng)絡爬蟲系統(tǒng)的研究與實現(xiàn)[D];電子科技大學;2013年
8 劉晶晶;面向微博的網(wǎng)絡爬蟲研究與實現(xiàn)[D];復旦大學;2012年
9 史嶺峰;基于社交網(wǎng)絡好友關系的圖查詢算法研究與應用[D];南京理工大學;2012年
10 方東昊;基于LDA的微博短文本分類技術的研究與實現(xiàn)[D];東北大學;2011年
,本文編號:2300751
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2300751.html