圖像去噪與圖像分割中的數(shù)學(xué)方法
[Abstract]:Partial differential equations and variational methods have become two very important tools in the field of image processing. For partial differential equations, we can construct partial differential equations directly to solve the problems of image restoration and image segmentation. For variational methods, image restoration and image segmentation problems are often transformed into an energy functional minimization problem, which can integrate some useful information, such as prior shape and boundary regularization. In this paper, on the one hand, we propose efficient mathematical models, and focus on the application of fast algorithms in image processing; on the other hand, we give some theoretical analysis of the models, so that these models can be supported theoretically. The main research contents of this paper are as follows: the first part: mathematical method in image denoising. Based on partial differential equation of fractional fidelity term, we propose a new partial differential equation for image denoising. The model combines fractional fidelity terms and global grayscale fidelity terms. The combination of these two fidelity terms can measure the similarity of grayscale changes between images, eliminate the ladder effect, and enhance the texture information of images. Experimental results show that the model based on fractional fidelity term is better than the model based on gradient fidelity term. 2. Based on the partial differential equation of time-delay regularization, we propose a nonlinear partial differential equation based on time-delay regularization. This equation can save image texture information while removing image noise. Because delay regularization is incorporated into the filtering process, we can obtain images of each step in the iterative process. The time-delay regularization method can replace the Gao Si filtering smoothing method which only constructs diffusion coefficients from the image itself and can prevent excessive smoothing. Finally, we use the Galerkin method to prove the existence and uniqueness of the solution of the equation. The second part: the mathematical method of image segmentation. 1. We propose an image segmentation method based on image restoration and Mumford-Shah model, which is based on image restoration and image segmentation based on Mumford-Shah model. This method can effectively extract regions of interest from blurred or noisy images. Because the alternating iteration algorithm is easy to calculate and has the convergence property, we choose the alternating iteration algorithm to solve our model. In theory, we give the existence and uniqueness of minimized energy functional solutions. 2. Based on the Mumford-Shah model of mean curvature regularization of image surface and the threshold of image segmentation, we first propose an improved Mumford-Shah model. The canonical term of the model is replaced by the L1 norm of the mean curvature of the image surface. The improved Mumford-Shah model can not only remove noise, but also preserve the geometric shape of the object, especially at the corner of the object. Using Augmented Lagrangian algorithm to solve the model, we get a smooth image u. Finally, the image segmentation is realized by selecting the appropriate threshold. Experiments show that our method can better extract the boundary of the object, especially at the corner.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李仲;圖像分割的妙法[J];電腦知識(shí)與技術(shù);2000年S2期
2 唐偉力;龍建忠;;一種基于降雨模型的圖像分割方法在礫巖圖像分割中的應(yīng)用[J];成都信息工程學(xué)院學(xué)報(bào);2007年02期
3 黃曉莉;曾黃麟;王秀碧;劉永春;;基于脈沖耦合神經(jīng)網(wǎng)絡(luò)的圖像分割[J];信息技術(shù);2008年09期
4 肖飛;綦星光;;圖像分割方法綜述[J];可編程控制器與工廠自動(dòng)化;2009年11期
5 汪一休;;一種交互式圖像分割的修正優(yōu)化方法[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2010年02期
6 李丹;;圖像分割方法及其應(yīng)用研究[J];科技信息;2010年36期
7 龔永義;黃輝;于繼明;關(guān)履泰;;基于熵的兩區(qū)域圖像分割[J];中國(guó)圖象圖形學(xué)報(bào);2011年05期
8 張甫;李興來;陳佳君;;淺談圖像分割方法的研究運(yùn)用[J];科技創(chuàng)新與應(yīng)用;2012年04期
9 汪梅;何高明;賀杰;;常見圖像分割的技術(shù)分析與比較[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2013年06期
10 魏慶;盧照敢;邵超;;基于復(fù)雜性指數(shù)的圖像分割必要性判別技術(shù)[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
相關(guān)會(huì)議論文 前10條
1 楊魁;趙志剛;;圖像分割技術(shù)綜述[A];2008年中國(guó)高校通信類院系學(xué)術(shù)研討會(huì)論文集(下冊(cè))[C];2009年
2 楊暄;郭成安;李建華;;改進(jìn)的脈沖耦合神經(jīng)網(wǎng)絡(luò)及其在圖像分割中的應(yīng)用[A];第十屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2001)論文集[C];2001年
3 楊生友;;圖像分割在醫(yī)學(xué)圖像中應(yīng)用現(xiàn)狀綜述[A];2009中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十七次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2009年
4 閆平昆;;基于模型的圖像分割技術(shù)及其醫(yī)學(xué)應(yīng)用[A];第十五屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
5 高嵐;胡友為;潘峰;盧凌;;基于小生境遺傳算法的SAR圖像分割[A];可持續(xù)發(fā)展的中國(guó)交通——2005全國(guó)博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(下冊(cè))[C];2005年
6 孫莉;張艷寧;胡伏原;趙榮椿;;基于Gaussian-Hermite矩的SAR圖像分割[A];第十三屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
7 李盛;;基于協(xié)同聚類的圖像分割[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
8 張利;許家佗;;舌象圖像分割技術(shù)的研究與應(yīng)用進(jìn)展[A];中華中醫(yī)藥學(xué)會(huì)中醫(yī)診斷學(xué)分會(huì)第十次學(xué)術(shù)研討會(huì)論文集[C];2009年
9 秦昆;李振宇;李輝;李德毅;;基于云模型和格網(wǎng)劃分的圖像分割方法[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
10 高惠琳;竇麗華;陳文頡;謝剛;;圖像分割技術(shù)在醫(yī)學(xué)CT中的應(yīng)用[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)A卷[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 馬倩婷;圖像去噪與圖像分割中的數(shù)學(xué)方法[D];浙江大學(xué);2017年
2 白雪飛;基于視覺顯著性的圖像分割方法研究[D];山西大學(xué);2014年
3 黃萬里;基于高分衛(wèi)星數(shù)據(jù)多尺度圖像分割方法的天山森林小班邊界提取研究[D];福建師范大學(xué);2015年
4 王輝;圖像分割的最優(yōu)化和水平集方法研究[D];電子科技大學(xué);2014年
5 高婧婧;腦部MR圖像分割理論研究[D];電子科技大學(xué);2014年
6 潘改;偏微分方程在圖像分割中的應(yīng)用研究[D];東北大學(xué);2013年
7 馮籍瀾;高分辨率SAR圖像分割與分類方法研究[D];電子科技大學(xué);2015年
8 李偉斌;圖像分割中的變分模型與快速算法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
9 鄧曉政;基于免疫克隆選擇優(yōu)化和譜聚類的復(fù)雜圖像分割[D];西安電子科技大學(xué);2014年
10 帥永e,
本文編號(hào):2298997
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2298997.html