基于標(biāo)簽聚類(lèi)和興趣劃分的個(gè)性化推薦算法研究
[Abstract]:With the development of the Internet, a lot of information appears in people's vision. Information explosion makes it easier for people to receive many kinds of information. But at the same time, rapid access to valuable information has become more difficult. In order to solve this problem, information is usually retrieved and filtered. As the representative of information retrieval technology, search engine can help people to retrieve useful information from a large amount of information. However, when the search keywords do not reflect the search requirements properly, the results of the query will be disappointing. Personalized recommendation as a typical application of information filtering can make up for this deficiency. The current mainstream recommendation algorithms include content-based recommendation, collaborative filtering recommendation, rule-based recommendation, mixed recommendation and so on. Among these recommendation algorithms, collaborative filtering is the most widely used recommendation technology. According to the product score and similarity algorithm, the users with similar interests and preferences are selected, and those products that have not been evaluated by the target users are selected from the products with high evaluation. However, the traditional collaborative filtering does not take into account the impact of labels on the recommended results, only according to the user's score of resources unilaterally mining user interest, failed to effectively divide user interest. It also ignores the changes in user interest over time. In order to solve the above problems, this paper has carried out the following research: 1. In view of the fact that the traditional collaborative filtering neglects the change of user preferences due to the passage of time, a collaborative filtering recommendation algorithm combining time factors is proposed in this paper. Taking into account the influence of product scoring time and the degree of product attention in different time periods on user interest preference, the time forgetting model and time window model are established, and the two models are combined to generate time factors. After that, in the calculation of user similarity, time factor is used to filter the product score, so that the similar users of target users can be calculated more accurately, and the quality of recommendation caused by time factors can be reduced. Experiments show that this method can effectively adapt to the change of user interest and improve the accuracy of intelligent Web system in recommendation. 2. Considering the relationship between users and tags, this paper proposes a collaborative filtering recommendation algorithm based on tag clustering and interest partition. The algorithm takes into account the influence of labels and user ratings on the recommended results, classifies user interests by label clustering, and selects similar users of target users in terms of labels and product ratings. At the same time, time factor is incorporated in the calculation of label and product rating weight to adapt to the change of user's interest. Experimental results show that the proposed algorithm can effectively divide user interest reduce the influence of time factors on recommendation quality and improve recommendation accuracy through cross-validation and comparison with other recommendation algorithms on Movielens data set.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類(lèi)的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):2298234
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2298234.html