多模態(tài)生物特征識別技術(shù)的算法研究
[Abstract]:In recent years, biometric identification technology has been developed rapidly. However, the traditional single mode identification technology has some limitations, which leads to some unnecessary problems in practical application. With the maturation of data fusion technology, multi-modal biometric recognition, which uses a variety of biometric features for data fusion recognition, has received a lot of technical support. It also enables the technology to enter our daily lives more quickly. In this paper, the common single-mode biometrics and the traditional multi-modal biometric fusion strategies are studied. Finally, two kinds of single-mode biometrics, fingerprint and iris, are adopted in this paper. Experiments of fusion recognition are carried out at the level of feature layer in multimodal biometric recognition. The main work is summarized as follows: 1. The related methods of multimodal biometric recognition data fusion at various levels are deeply understood and studied, including series-parallel fusion and (CCA) fusion based on canonical correlation analysis, fractional fusion based on least square method and Fisher discriminant, etc. The weighted method and the majority voting method are merged at the decision-making level. 2. On the basis of in-depth research on multi-modal biometric fusion, a feature layer fusion model based on fingerprint and iris is proposed, which is compared with the existing feature layer fusion strategy. The conclusion that the recognition rate of multimodal fusion recognition is higher than that of single mode recognition is proved by experiments, and the validity of fusion algorithm based on canonical correlation analysis in multi-modal biometric recognition is verified. Aiming at the shortcomings of the fusion algorithm based on canonical correlation analysis, a multi-modal biometric recognition algorithm based on matrix transform for discriminating canonical correlation analysis (MDCCA) is proposed, and the two algorithms are tested in the same environment. Experimental results show that the algorithm is effective. 4. 4. On the basis of the new algorithm proposed in this paper, a complete multimodal biometric recognition process is completed. The algorithm studied in this paper has some reference value in the field of data fusion and multi-modal biometric recognition.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李洪亮;馬啟明;杜栓平;;一種基于典型相關(guān)分析的特征融合算法[J];聲學(xué)與電子工程;2015年01期
2 羅志成;鐘鑫;吳瑞紅;;國外生物特征識別技術(shù)在身份證件中的應(yīng)用[J];中國安防;2014年21期
3 申志華;俞飛;;虹膜識別技術(shù)的優(yōu)越性及其在身份鑒別中的應(yīng)用[J];保密科學(xué)技術(shù);2014年06期
4 宋克臣;顏云輝;陳文輝;張旭;;局部二值模式方法研究與展望[J];自動化學(xué)報;2013年06期
5 王風(fēng)華;孟文杰;;一種基于特征級融合的多模態(tài)生物特征識別方法[J];科學(xué)技術(shù)與工程;2012年13期
6 劉云東;崔琳;郝汝崗;;一種廣義局部判別型典型相關(guān)分析算法[J];計算機(jī)工程;2012年07期
7 張志堅;趙松;張培仁;;增強(qiáng)典型相關(guān)分析及其在多模態(tài)生物特征識別特征層融合中的應(yīng)用[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2010年08期
8 張剛;馬宗民;;一種采用Gabor小波的紋理特征提取方法[J];中國圖象圖形學(xué)報;2010年02期
9 張潔玉;陳強(qiáng);白小晶;孫權(quán)森;夏德深;;基于廣義典型相關(guān)分析的仿射不變特征提取方法[J];電子與信息學(xué)報;2009年10期
10 劉麗;匡綱要;;圖像紋理特征提取方法綜述[J];中國圖象圖形學(xué)報;2009年04期
,本文編號:2297004
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2297004.html