面向人機交互的手勢識別
發(fā)布時間:2018-04-12 21:14
本文選題:人機交互 + 手勢識別 ; 參考:《華中科技大學》2016年碩士論文
【摘要】:隨著信息技術(shù)的迅猛發(fā)展,計算機、智能電視等智能機器對于人們的生活愈發(fā)重要。將手勢引入人機交互系統(tǒng),使得人們可以和智能設(shè)備通過定義好的手勢進行交流,這種改變將對日益趨向電子化的生活帶來極大的便利。本文先介紹了一種基于手勢識別的人機交互系統(tǒng),系統(tǒng)由視頻圖像采集、視頻圖像分析、智能設(shè)備響應等三個部分構(gòu)成。人臉檢測、運動檢測和手勢識別共同組成了系統(tǒng)核心模塊——視頻圖像分析。本文主要對面向人機交互的手勢識別算法進行了研究并提出兩種識別算法。基于輪廓特征的識別方法根據(jù)人臉檢測算法檢測到的人臉進行膚色特征提取;再利用膚色信息和運動信息完成膚色點檢測并提取手勢輪廓;通過對輪廓進行簡化和擬合,得到近似手勢的多邊形以及角度,基于這些信息提取輪廓特征,從而實現(xiàn)多尺度多角度的手勢識別。基于輪廓特征的識別方法在背景與膚色比較相近的情況下,誤識率比較高,基于多分類器的手勢識別算法克服了這一缺陷。算法主通過基于分割的跟蹤算法進行人手跟蹤,獲取人手的大致輪廓以及位置,通過這些信息提取直立的人手圖像塊,最后提取該圖像塊的HOG特征,并通過多個分類器進行手勢的識別。算法在復雜背景膚色相似背景均具有較高識別率。
[Abstract]:With the rapid development of information technology, computers, intelligent TV and other intelligent machines are becoming more and more important to people's lives.With the introduction of hand gestures into human-computer interaction systems, people can communicate with intelligent devices through well-defined gestures, which will bring great convenience to the increasingly electronic life.This paper first introduces a human-computer interaction system based on gesture recognition, which consists of three parts: video image acquisition, video image analysis and intelligent device response.Face detection, motion detection and gesture recognition constitute the core module of the system-video image analysis.In this paper, the gesture recognition algorithm for human-computer interaction is studied and two recognition algorithms are proposed.The recognition method based on contour feature is used to extract the skin color feature of the face detected by the face detection algorithm; then the skin color information and motion information are used to detect the skin color points and extract the contour of the gesture; the contour is simplified and fitted.The polygon and angle of the approximate gesture are obtained, and the contour features are extracted based on these information, and the multi-scale and multi-angle gesture recognition is realized.The recognition method based on contour features has a high error rate when the background is similar to the skin color. The multi-classifier based gesture recognition algorithm overcomes this defect.The algorithm uses segment-based tracking algorithm to get the rough contour and position of the human hand, extract the vertical human image block through these information, and finally extract the HOG features of the image block.Gestures are recognized by multiple classifiers.The algorithm has high recognition rate for complex background with similar skin color background.
【學位授予單位】:華中科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前5條
1 楊文姬;孔令富;;使用視覺注意和多特征融合的手勢檢測與識別[J];小型微型計算機系統(tǒng);2015年03期
2 郭文爽;王雪芳;;基于HOG和SVM的手勢檢測技術(shù)[J];電子科技;2014年08期
3 王凱;于鴻洋;張萍;;基于AdaBoost算法和光流匹配的實時手勢識別[J];微電子學與計算機;2012年04期
4 任海兵,祝遠新,徐光yP,張曉平,林學,
本文編號:1741455
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1741455.html
最近更新
教材專著