邊緣檢測算法及其在面癱識別系統(tǒng)中的應(yīng)用
本文選題:圖像處理 切入點:邊緣檢測 出處:《長春工業(yè)大學(xué)》2017年碩士論文
【摘要】:邊緣檢測作為數(shù)字圖像處理中一種常用的處理方法,是很多圖像處理技術(shù)的基礎(chǔ)。圖像的邊緣包含了大量的圖像特征信息,可用于特征描述、圖像增強(qiáng)、圖像分割、模式識別等圖像分析和處理中。因此圖像邊緣檢測算法一直是圖像處理和計算機(jī)視覺領(lǐng)域的研究熱點,期望尋找一種檢測精度和抗噪能力都令人滿意的算法。面癱是一種人臉面部神經(jīng)運動功能受損的疾病,它給人的身心都帶來極大的傷害。但現(xiàn)在醫(yī)學(xué)對面癱的判定大都基于主觀判斷,沒有一個統(tǒng)一的評價標(biāo)準(zhǔn)。利用邊緣檢測算法建立面癱識別系統(tǒng),準(zhǔn)確判定面癱程度,對于提早發(fā)現(xiàn)疑似病例、指導(dǎo)臨床用藥、評估治療效果以及學(xué)術(shù)領(lǐng)域交流等具有重要的意義。本文利用邊緣檢測算法對面癱圖像進(jìn)行了處理,期望建立一個較為標(biāo)準(zhǔn)的面癱識別系統(tǒng),從而實現(xiàn)對面癱圖像的識別與分級。本文主要完成改進(jìn)邊緣檢測算法和建立面癱識別系統(tǒng)兩方面的工作。本文首先對一些傳統(tǒng)的邊緣檢測算法進(jìn)行了分析與研究,并介紹了三種新興的邊緣檢測方法,在對這些方法歸納研究的基礎(chǔ)上,提出了一種改進(jìn)的邊緣檢測算法。通過增加模板方向來改進(jìn)Sobel算法,再利用遺傳算法改進(jìn)Canny算法的閾值選取過程,然后采用小波變換的方法對兩種改進(jìn)的算法進(jìn)行圖像融合處理,結(jié)合兩種算法的優(yōu)點,得到改進(jìn)的邊緣檢測算法。然后,針對面癱圖像特征的位置信息,設(shè)計了一種面部圖像采集系統(tǒng),獲取含有區(qū)域分塊的人臉圖像。在建立面癱識別系統(tǒng)時,利用改進(jìn)的邊緣檢測算法對面癱圖像進(jìn)行處理以提取圖像邊緣特征信息。根據(jù)面癱患者面部不對稱的性質(zhì),計算特征信息矩陣之間的差值,提出一種基于對稱軸的面癱分級方法。再將其與基于距離的面癱評分方法相結(jié)合,完成對圖像最終的等級劃分,建立面癱識別系統(tǒng),實現(xiàn)對面癱圖像的識別與分級。
[Abstract]:Edge detection, as a common processing method in digital image processing, is the basis of many image processing techniques.The edge of the image contains a large amount of image feature information, which can be used in image analysis and processing such as feature description, image enhancement, image segmentation, pattern recognition and so on.Therefore, image edge detection algorithm has been a hot topic in the field of image processing and computer vision. It is expected to find an algorithm with satisfactory detection accuracy and anti-noise ability.Facial paralysis is a kind of facial nerve function damage disease, it brings great harm to the body and mind.But now the medical judgment of facial paralysis is mostly based on subjective judgment, without a unified evaluation standard.Using edge detection algorithm to establish facial paralysis recognition system and accurately determine the degree of facial paralysis is of great significance for the early detection of suspected cases, the guidance of clinical medication, the evaluation of therapeutic effect and the exchange of academic fields.In this paper, the edge detection algorithm is used to deal with the facial paralysis image, and it is expected to establish a standard facial paralysis recognition system, so as to realize the recognition and classification of the facial paralysis image.In this paper, the improvement of edge detection algorithm and the establishment of facial paralysis recognition system are mainly completed.In this paper, some traditional edge detection algorithms are analyzed and studied, and three new edge detection methods are introduced. Based on the research of these methods, an improved edge detection algorithm is proposed.The Sobel algorithm is improved by adding the template direction, and the threshold selection process of the Canny algorithm is improved by genetic algorithm. Then the image fusion of the two improved algorithms is carried out by wavelet transform, which combines the advantages of the two algorithms.An improved edge detection algorithm is presented.Then, according to the position information of facial paralysis image feature, a facial image acquisition system is designed to obtain the face image with regional block.In order to extract the edge feature information of facial paralysis image, the improved edge detection algorithm is used to process the facial paralysis image.According to the character of facial asymmetry in facial paralysis patients, the difference between characteristic information matrix is calculated, and a method of facial paralysis classification based on symmetry axis is proposed.Then combining it with the distance based facial paralysis scoring method, the final classification of the image is completed, and the recognition system of facial paralysis is established to realize the recognition and classification of the facial paralysis image.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐曉麗;;中醫(yī)綜合治療周圍性面癱的護(hù)理療效觀察[J];中國婦幼健康研究;2016年S2期
2 任思茹;;針灸結(jié)合現(xiàn)代康復(fù)治療腦卒中偏癱的療效觀察[J];中西醫(yī)結(jié)合心血管病電子雜志;2016年13期
3 張慧娟;;針灸治療面神經(jīng)麻痹臨床分析[J];內(nèi)蒙古中醫(yī)藥;2015年06期
4 韓桂榮;;整體綜合護(hù)理模式護(hù)理糖尿病并發(fā)周圍性面癱臨床效果分析[J];中國繼續(xù)醫(yī)學(xué)教育;2015年14期
5 沈德海;侯建;鄂旭;;基于改進(jìn)的Sobel算子邊緣檢測算法[J];計算機(jī)技術(shù)與發(fā)展;2013年11期
6 陳一虎;;圖像邊緣檢測方法綜述[J];寶雞文理學(xué)院學(xué)報(自然科學(xué)版);2013年01期
7 陳汗青;萬艷玲;王國剛;;數(shù)字圖像處理技術(shù)研究進(jìn)展[J];工業(yè)控制計算機(jī);2013年01期
8 張輝;馬明建;;基于改進(jìn)Sobel算法的葉片圖像邊緣檢測[J];農(nóng)機(jī)化研究;2012年05期
9 王冠;丁友東;魏小成;;基于改進(jìn)Sobel算子的文物圖像檢索[J];計算機(jī)技術(shù)與發(fā)展;2011年10期
10 陳增力;吳剛;崔福玲;齊鵬;;周圍性面癱的定位診斷與中西醫(yī)結(jié)合療效的相關(guān)性研究[J];中國全科醫(yī)學(xué);2010年19期
相關(guān)碩士學(xué)位論文 前5條
1 楊寧;人臉檢測識別方法研究與系統(tǒng)設(shè)計[D];東北大學(xué);2012年
2 吳昊;面神經(jīng)功能評價系統(tǒng)應(yīng)用于針刺治療周圍性面癱相關(guān)標(biāo)準(zhǔn)的研究[D];山東中醫(yī)藥大學(xué);2012年
3 曹守斌;基于圖像認(rèn)證的脆弱水印技術(shù)研究[D];杭州電子科技大學(xué);2012年
4 馬麗晶;基于關(guān)鍵點和區(qū)域分塊的面神經(jīng)功能評價方法研究[D];中國海洋大學(xué);2009年
5 金剛;自適應(yīng)Canny算法研究及其在圖像邊緣檢測中的應(yīng)用[D];浙江大學(xué);2009年
,本文編號:1721254
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1721254.html