熒光顯微圖像的解卷積方法研究
本文選題:熒光顯微 切入點(diǎn):點(diǎn)擴(kuò)散函數(shù) 出處:《華中科技大學(xué)》2016年碩士論文
【摘要】:熒光顯微成像方法是采用紫外線作為照射源,來(lái)照射被檢測(cè)細(xì)胞,使細(xì)胞結(jié)構(gòu)發(fā)出熒光,然后在顯微鏡下觀察細(xì)胞的形狀及其他特征。在生物醫(yī)學(xué)研究中,通過(guò)熒光成像技術(shù),可以查看到生物細(xì)胞的活體結(jié)構(gòu)和活動(dòng)機(jī)理。但是由于各種因素的干擾,成像系統(tǒng)得到的圖像分辨率都會(huì)降低,而解卷積的目的就是提高退化后圖像的分辨率。通常有兩種可用的解卷積方法:光學(xué)的和計(jì)算的。光學(xué)方法是在散焦光到達(dá)檢測(cè)器之前就阻擋它以減少失真。雖然光學(xué)處理的圖像的三維分辨率更為明顯,但是該圖像包含嚴(yán)重的各向異性。在計(jì)算解卷積的方法中,數(shù)據(jù)則是由計(jì)算機(jī)處理,以減弱圖像中的噪聲和模糊,本文就是通過(guò)計(jì)算的方法來(lái)提升圖像分辨率。本文提供了三種解卷積的思路。傳統(tǒng)解卷積方法均為非盲解卷積,僅適用于點(diǎn)擴(kuò)散函數(shù)已知的情形,我們?cè)O(shè)計(jì)了一種基于參數(shù)化點(diǎn)擴(kuò)散函數(shù)模型的解卷積方法,將點(diǎn)擴(kuò)散函數(shù)擬合為多重高斯疊加形式,構(gòu)造出了ER方法的盲解卷積形式,然后采用輪流優(yōu)化方法進(jìn)行求解,同時(shí)我們將結(jié)合TV與Hessian正則的多重正則方法用于ER解卷積。第二種思路是在似然項(xiàng)不變的情況下提出了Non-local正則項(xiàng),并應(yīng)用到二維空間圖像與三維時(shí)間序列圖像中,并采用最速下降法求解。思路三則是利用三維熒光圖像縱軸分辨率低于橫軸的特點(diǎn),將圖像沿縱軸進(jìn)行插值,以使與橫軸分辨率一致,然后采用稀疏表示的方法從橫軸學(xué)習(xí)字典應(yīng)用到縱軸,同時(shí)結(jié)合縱軸的Non-loal先驗(yàn)來(lái)提高縱軸的分辨率。本文采用MATLAB R2012a和Visual Studio 2012軟件進(jìn)行計(jì)算機(jī)仿真,并將每種方法的實(shí)驗(yàn)結(jié)果都與Richard-Lucy、Richard-Lucy+TV和維納濾波方法進(jìn)行了對(duì)比,并對(duì)解卷積結(jié)果針對(duì)峰值信噪比(PSNR)、結(jié)構(gòu)相似度(SSIM)兩個(gè)性能指標(biāo)進(jìn)行了比較和分析。通過(guò)對(duì)仿真數(shù)據(jù)和真實(shí)數(shù)據(jù)的對(duì)比實(shí)驗(yàn)發(fā)現(xiàn):基于參數(shù)化點(diǎn)擴(kuò)散函數(shù)的盲解卷積模型、基于Non-local正則項(xiàng)的解卷積模型與基于稀疏表示的解卷積模型這三種思路都有著較為顯著的解卷積效果。
[Abstract]:Fluorescence microscopic imaging method is used as the ultraviolet irradiation source, irradiated cells were detected, the cell structure of the fluorescence and then observe the cell shape and other characteristics under the microscope. In biomedical research, through the fluorescence imaging technology, you can view the structure and biological activities in vivo cellular mechanism. But due to various factors the imaging system, the image resolution will be reduced, and the deconvolution is to improve resolution of image degradation. There are usually two deconvolution methods available: optical and optical method is calculated. The defocus before the light reaches the detector will block it to reduce distortion. Although 3D optical resolution image processing the more obvious, but the image contains serious anisotropy. In the calculation method of deconvolution, data is processed by a computer, to reduce the noise in the image And fuzzy, the work of this paper is to improve the image resolution by calculation method. Provides three deconvolution ideas in this paper. The traditional deconvolution methods are non blind deconvolution, applies only to the point spread function is known, we designed a deconvolution method based on parametric point spread function model, the the point spread function fitting for multiple Gauss superposition constructed form ER method for blind deconvolution, and then solved by alternate optimization method, we combine multiple regularization method TV and Hessian regular ER for deconvolution. Second kinds of ideas is the likelihood unchanged under the condition of Non-local is put forward and the regularization term. Applied to 2D space and 3D image sequence images, and uses the steepest descent method. The ideas of the three is to use the 3D fluorescence image below horizontal longitudinal resolution characteristics of the image along the longitudinal axis In order to make the interpolation, and horizontal resolution, and then using the sparse representation dictionary is applied to learning from the horizontal axis, and combining with the longitudinal axis of the Non-loal prior to improve the longitudinal resolution. This paper uses MATLAB R2012a and Visual Studio 2012 software for computer simulation, and the experimental results of each method and Richard-Lucy, the comparison of Richard-Lucy+TV and Wiener filtering method, and the deconvolution results in peak signal-to-noise ratio (PSNR), the structural similarity (SSIM) two performance indexes were compared and analyzed. Based on the simulation data and real data experiments found that parameters of the point spread function of the blind deconvolution model based on convolution model Non-local regularization based on sparse representation based deconvolution model of the three methods have obvious deconvolution effect.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何同林;鄭鵬;劉郁林;尤春艷;;基于峰度準(zhǔn)則與判決引導(dǎo)的非線性盲解卷積[J];電子科技大學(xué)學(xué)報(bào);2007年02期
2 白文斯密;馬洪;常軍;;一種利用多核解卷積提高雷達(dá)角分辨力的方法[J];電訊技術(shù);2008年12期
3 王振國(guó);張建軍;耿則勛;;一種基于先驗(yàn)知識(shí)約束的圖像盲解卷積恢復(fù)算法[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2006年03期
4 王宇;伍星;遲毅林;周川;沈沂;;基于盲解卷積和聚類的機(jī)械弱沖擊聲信號(hào)提取[J];振動(dòng)工程學(xué)報(bào);2009年06期
5 胡邊,饒長(zhǎng)輝;增量維納濾波法在波前探測(cè)解卷積中的應(yīng)用[J];光學(xué)學(xué)報(bào);2004年10期
6 王凱;曾焱;丁志華;孟婕;史國(guó)華;張雨?yáng)|;;譜域光學(xué)相干層析系統(tǒng)中基于解卷積方法的像質(zhì)優(yōu)化[J];物理學(xué)報(bào);2010年04期
7 邸男;付東輝;王毅楠;;利用加權(quán)預(yù)測(cè)的圖像迭代盲解卷積[J];中國(guó)光學(xué);2011年05期
8 王正垠,馬遠(yuǎn)良,D.Vray,G.Gimenez;湖底寬帶回波信號(hào)的解卷積處理[J];信號(hào)處理;1997年04期
9 陸家昌,李正直;紅外遙感圖象的解卷積處理[J];紅外研究(A輯);1985年04期
10 賈鵬,史習(xí)智;基于非參數(shù)密度估計(jì)的多通道盲解卷積[J];信號(hào)處理;2003年04期
相關(guān)重要報(bào)紙文章 前1條
1 奚奇輝;油脂快速檢測(cè)再出新方法[N];中國(guó)國(guó)門時(shí)報(bào);2010年
相關(guān)博士學(xué)位論文 前2條
1 張之猛;水聲信號(hào)處理中的盲解卷積技術(shù)研究[D];哈爾濱工程大學(xué);2009年
2 王凱;譜域光學(xué)相干層析成像方法與系統(tǒng)研究[D];浙江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 邵昌盛;基于最小熵解卷積的風(fēng)電機(jī)組故障診斷研究[D];華北電力大學(xué)(北京);2016年
2 姜南李威;自適應(yīng)光學(xué)圖像盲解卷積復(fù)原關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
3 程鵬;熒光顯微圖像的解卷積方法研究[D];華中科技大學(xué);2016年
4 沈沂;盲解卷積在聲信號(hào)診斷中的應(yīng)用研究[D];昆明理工大學(xué);2010年
5 孔藝穎;亞細(xì)胞結(jié)構(gòu)的熒光解卷積成像方法的研究[D];清華大學(xué);2013年
,本文編號(hào):1658310
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1658310.html