2-DE圖像重疊蛋白點(diǎn)檢測(cè)算法研究
本文選題:2-DE圖像 切入點(diǎn):重疊蛋白質(zhì)點(diǎn) 出處:《山東師范大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:蛋白質(zhì)組學(xué)在揭示細(xì)胞生命過(guò)程規(guī)律中發(fā)揮越來(lái)越重要的作用。雙向凝膠電泳(2-DE)技術(shù)是一種非常重要的蛋白質(zhì)組學(xué)研究技術(shù)。2-DE圖像分析處理的目標(biāo)是快速識(shí)別單個(gè)蛋白質(zhì)點(diǎn),以及一組凝膠圖像樣本中的表達(dá)差異的蛋白質(zhì)。蛋白點(diǎn)的檢測(cè)是2-DE圖像基于計(jì)算機(jī)處理過(guò)程的基礎(chǔ)環(huán)節(jié),由于2-DE圖像的復(fù)雜性及制作過(guò)程中存在的干擾因素,使得蛋白質(zhì)點(diǎn)的檢測(cè)成為一個(gè)復(fù)雜又耗時(shí)的難題。本論文以2-DE圖像中重疊蛋白質(zhì)點(diǎn)的檢測(cè)為研究重點(diǎn),提出兩種重疊蛋白質(zhì)點(diǎn)的檢測(cè)方法,主要研究?jī)?nèi)容如下:(1)研究了2-DE圖像蛋白質(zhì)點(diǎn)預(yù)檢測(cè)方法。對(duì)比研究了均值濾波,中值濾波和高斯濾波等空間濾波算法,采用高斯濾波算法對(duì)凝膠圖像去噪,降低噪聲對(duì)凝膠圖像后續(xù)蛋白質(zhì)點(diǎn)檢測(cè)的影響;對(duì)比研究了基于閾值、基于分水嶺算法、基于區(qū)域生長(zhǎng)的蛋白質(zhì)點(diǎn)預(yù)分割方法,采用基于區(qū)域生長(zhǎng)算法對(duì)蛋白質(zhì)點(diǎn)進(jìn)行預(yù)檢測(cè),得到清晰的蛋白質(zhì)點(diǎn)邊界。(2)提出了基于凹區(qū)匹配的重疊蛋白質(zhì)點(diǎn)分割方法。首先獲得重疊蛋白質(zhì)點(diǎn)圖像的凸閉包結(jié)構(gòu),并通過(guò)凸閉包與原二值圖的差值獲得重疊蛋白質(zhì)點(diǎn)的凹區(qū);其次根據(jù)重疊蛋白質(zhì)點(diǎn)的重疊模型對(duì)凹區(qū)進(jìn)行兩兩配對(duì);然后根據(jù)匹配的凹區(qū)之間的最短歐式距離來(lái)確定凹點(diǎn);最后通過(guò)連接凹點(diǎn)對(duì)實(shí)現(xiàn)重疊蛋白質(zhì)點(diǎn)的分離。此方法不再?gòu)脑嫉鞍踪|(zhì)點(diǎn)邊界輪廓上提取凹點(diǎn),而是從凹區(qū)的輪廓上提取凹點(diǎn),明顯減小了凹點(diǎn)搜尋的范圍及處理的像素?cái)?shù)量,提高了重疊蛋白質(zhì)點(diǎn)分割的速度。實(shí)驗(yàn)表明,該算法在輕度重疊及重疊復(fù)雜度較小的情況下,分離效果較好。(3)提出了基于角點(diǎn)檢測(cè)與多邊形近似相結(jié)合的重疊蛋白質(zhì)點(diǎn)分割方法。首先采用Harris角點(diǎn)檢測(cè)法得到重疊蛋白質(zhì)點(diǎn)邊界的所有角點(diǎn);其次為降低蛋白質(zhì)點(diǎn)邊界上干擾凹點(diǎn)的影響,將邊界的角點(diǎn)作為特征點(diǎn),利用基于角點(diǎn)的多邊形近似算法對(duì)重疊蛋白質(zhì)點(diǎn)邊界進(jìn)行多邊形近似表示;然后通過(guò)判斷多邊形頂點(diǎn)的凹凸性來(lái)判斷角點(diǎn)的凹凸性進(jìn)而獲得凹角點(diǎn);最后提出凹點(diǎn)匹配準(zhǔn)則,并從凹角點(diǎn)中選取真正的凹點(diǎn)并構(gòu)造分離線,實(shí)現(xiàn)對(duì)重疊蛋白質(zhì)點(diǎn)的精確分割。該算法實(shí)現(xiàn)簡(jiǎn)單,不需要多次腐蝕與膨脹運(yùn)算,最大程度保持蛋白質(zhì)點(diǎn)邊緣。實(shí)驗(yàn)結(jié)果表明,與基于凹區(qū)匹配的算法相比,該算法提取的凹點(diǎn)的誤差更小,對(duì)重疊蛋白質(zhì)點(diǎn)的分離更加準(zhǔn)確,同時(shí)對(duì)重度重疊及重疊復(fù)雜度較大的蛋白質(zhì)點(diǎn)也有顯著的分離效果。
[Abstract]:Proteomics plays a more and more important role in revealing the laws of cell life process. Two-dimensional gel electrophoresis (2-DE) is a very important proteomics research technique. The detection of protein spots in a group of gel image samples is the basic part of 2-DE image processing based on computer. Because of the complexity of 2-DE image and the interference factors in the process of making 2-DE image, The detection of protein spots has become a complicated and time-consuming problem. In this paper, two detection methods of overlapping protein spots in 2-DE images are proposed. The main research contents are as follows: (1) the protein spot pre-detection method of 2-DE image is studied. The spatial filtering algorithms such as mean filter, median filter and Gao Si filter are compared and analyzed. The effect of noise reduction on the detection of protein spots in gel images is studied. The pre-segmentation method of protein points based on threshold, watershed algorithm and region growth is compared, and the pre-detection of protein spots based on region growth algorithm is studied. A new method of overlapping protein point segmentation based on concave matching is proposed. Firstly, the convex closure structure of overlapping protein point image is obtained. The concave region of overlapping protein points is obtained by the difference between convex closure and original binary graph. Secondly, the concave region is pairwise paired according to the overlapping model of overlapping protein points, and the concave point is determined according to the shortest Euclidean distance between the matching concave regions. Finally, the overlapping protein points are separated by connecting concave pairs. Instead of extracting concave points from the boundary contours of the original protein points, the method extracts concave points from the concave contour. The range of concave search and the number of pixels processed are reduced obviously, and the speed of overlapping protein spot segmentation is improved. In this paper, an overlapping protein point segmentation method based on corner detection and polygon approximation is proposed. Firstly, all corners of overlapping protein point boundary are obtained by Harris corner detection method. Secondly, in order to reduce the effect of interference concave on the protein point boundary, the corner of the boundary is taken as the feature point, and the polygonal approximation algorithm based on the corner point is used to represent the overlapping protein point boundary by polygon approximation. Finally, the concave point matching criterion is proposed, and the real concave point is selected from the concave corner and the separation line is constructed. The algorithm is simple to implement, does not require multiple corrosion and expansion operations, and keeps the edge of protein points to the maximum extent. The experimental results show that compared with the algorithm based on concave matching, the proposed algorithm is more efficient than the one based on concave matching. The algorithm has less error in extracting concave points and more accurate separation of overlapped protein spots, and it also has a significant effect on separation of protein spots with heavy overlap and high overlap complexity.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q51;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王征;馬憲民;;基于邊界剝離分水嶺算法的重疊顆粒分離研究[J];科學(xué)技術(shù)與工程;2015年04期
2 王曉潔;張曉煜;鄭小東;薄樹(shù)奎;;基于多邊形近似的葉緣缺刻位置自動(dòng)檢測(cè)[J];計(jì)算機(jī)應(yīng)用與軟件;2014年09期
3 柳冠伊;劉平義;魏文軍;張紹英;李海濤;;玉米果穗粘連籽粒圖像分割方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年09期
4 熊邦書(shū);李俊;歐巧鳳;唐浩;;基于形狀特征的重疊蛋白質(zhì)點(diǎn)分離算法[J];生物醫(yī)學(xué)工程學(xué)雜志;2013年05期
5 王衛(wèi)星;田利平;王悅;;基于改進(jìn)的圖論最小生成樹(shù)及骨架距離直方圖分割細(xì)胞圖像[J];光學(xué)精密工程;2013年09期
6 宋懷波;張傳棟;潘景朋;陰?kù)?莊伊斌;;基于凸殼的重疊蘋(píng)果目標(biāo)分割與重建算法[J];農(nóng)業(yè)工程學(xué)報(bào);2013年03期
7 武宗茜;王鵬;丁天懷;;活動(dòng)輪廓模型在重疊藻細(xì)胞計(jì)數(shù)中的應(yīng)用[J];計(jì)算機(jī)工程;2012年03期
8 宋曉眉;程昌秀;周成虎;;簡(jiǎn)單多邊形頂點(diǎn)凹凸性判斷算法綜述[J];國(guó)土資源遙感;2011年03期
9 蘇娜;薛河儒;;重疊牛乳體細(xì)胞判別和分割方法的研究[J];計(jì)算機(jī)工程;2011年07期
10 劉偉華;隋青美;;基于凹點(diǎn)搜索的重疊粉體顆粒的自動(dòng)分離算法[J];電子測(cè)量與儀器學(xué)報(bào);2010年12期
相關(guān)博士學(xué)位論文 前1條
1 傅蓉;細(xì)胞重疊與融合性圖像的分離與分割技術(shù)研究[D];第一軍醫(yī)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前9條
1 魏潔;凝膠圖像重疊蛋白質(zhì)點(diǎn)的分割方法研究[D];山東師范大學(xué);2015年
2 黃周偉;2D-GE圖像弱蛋白點(diǎn)和重疊蛋白點(diǎn)檢測(cè)方法研究[D];南昌航空大學(xué);2014年
3 張彥清;基于馬爾科夫隨機(jī)場(chǎng)的凝膠電泳圖像分割技術(shù)研究[D];山東師范大學(xué);2014年
4 李俊;二維凝膠圖像重疊蛋白質(zhì)點(diǎn)分離方法研究[D];南昌航空大學(xué);2013年
5 孫思佳;基于可見(jiàn)光與紅外圖像融合的目標(biāo)識(shí)別研究[D];南京航空航天大學(xué);2012年
6 張超;基于模糊形態(tài)學(xué)和分水嶺的蛋白質(zhì)點(diǎn)檢測(cè)方法研究[D];南昌航空大學(xué);2012年
7 黃興華;圖像分割在足跡分割中的運(yùn)用[D];大連理工大學(xué);2012年
8 趙風(fēng)平;蛋白質(zhì)凝膠圖像消噪技術(shù)研究[D];山東師范大學(xué);2012年
9 韋冬冬;基于顯微圖像的PTA粒徑分布估計(jì)方法研究[D];浙江大學(xué);2010年
,本文編號(hào):1645176
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1645176.html