天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于深度學(xué)習(xí)的圖像識(shí)別與文字推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-03-07 23:07

  本文選題:深度學(xué)習(xí) 切入點(diǎn):卷積神經(jīng)網(wǎng)絡(luò) 出處:《北京交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:深度學(xué)習(xí)(DL,Deep Learning)是機(jī)器學(xué)習(xí)(ML,Machine Learning)的一個(gè)重要方法和研究方向,屬于人工智能(AI,Artificial Intelligence)領(lǐng)域的重要分支。隨著大數(shù)據(jù)技術(shù)的發(fā)展,深度學(xué)習(xí)迎來(lái)了又一個(gè)快速發(fā)展的時(shí)期,這也使得深度學(xué)習(xí)理論與算法研究煥發(fā)新的活力。卷積神經(jīng)網(wǎng)絡(luò)(CNN,Convolutional Neural Network)作為深度學(xué)習(xí)模型的代表,是模擬視覺(jué)系統(tǒng)層次化的工作模式,在人工神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上構(gòu)建具有層次化結(jié)構(gòu)的人工網(wǎng)絡(luò)模型。其局部感知、層次結(jié)構(gòu)化等特點(diǎn)在處理圖像識(shí)別問(wèn)題上具有巨大優(yōu)勢(shì),在現(xiàn)代模式識(shí)別領(lǐng)域獲得了廣泛應(yīng)用。本文在整理與總結(jié)國(guó)內(nèi)外深度學(xué)習(xí)的基本理論成果與在工程上的應(yīng)用現(xiàn)狀,并對(duì)卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)分析的基礎(chǔ)上,結(jié)合Word2Vec與TensorFlow深度學(xué)習(xí)框架,開(kāi)發(fā)了圖像識(shí)別與文字推薦系統(tǒng),以工程應(yīng)用為背景對(duì)其理論成果進(jìn)行研究。本文主要進(jìn)行了以下幾項(xiàng)工作:整理國(guó)內(nèi)外深度學(xué)習(xí)的研究成果,并對(duì)深度學(xué)習(xí)的背景與應(yīng)用進(jìn)行總結(jié);分析卷積神經(jīng)網(wǎng)絡(luò)與Word2Vec的結(jié)構(gòu)與基本原理,并對(duì)理解網(wǎng)絡(luò)模型所需的基本算法進(jìn)行了介紹;設(shè)計(jì)本文的圖像識(shí)別與文字推薦系統(tǒng),并以經(jīng)典CNN網(wǎng)絡(luò)結(jié)構(gòu)為基礎(chǔ)設(shè)計(jì)基于本文推薦的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu);進(jìn)行數(shù)據(jù)集的準(zhǔn)備、深度學(xué)習(xí)框架的搭建及本文模型訓(xùn)練工作,并實(shí)現(xiàn)本文圖像識(shí)別與文字推薦系統(tǒng);通過(guò)以上工作,本文從工程項(xiàng)目應(yīng)用的角度驗(yàn)證了深度學(xué)習(xí)在圖像識(shí)別與自然語(yǔ)言處理問(wèn)題上的優(yōu)勢(shì)。
[Abstract]:Deep learning is an important method and research direction of machine learning, which belongs to the important branch of artificial intelligence. With the development of big data technology, deep learning has ushered in another period of rapid development. As a representative of depth learning model, convolution neural network (CNN) is a hierarchical working mode of simulating visual system. An artificial network model with hierarchical structure is constructed on the basis of artificial neural network. Its local perception and hierarchical structure have great advantages in image recognition. It has been widely used in the field of modern pattern recognition. In this paper, the basic theoretical achievements of deep learning at home and abroad and the present situation of application in engineering are summarized, and the network structure of convolutional neural network is analyzed. Based on the Word2Vec and TensorFlow deep learning framework, an image recognition and character recommendation system is developed, and its theoretical results are studied under the background of engineering application. The main work of this paper is as follows: sorting out the research results of deep learning at home and abroad. The background and application of deep learning are summarized, the structure and basic principle of convolutional neural network and Word2Vec are analyzed, and the basic algorithms for understanding the network model are introduced. Based on the classical CNN network structure, we design the convolutional neural network structure recommended in this paper, prepare the data set, build the deep learning framework and train the model in this paper, and realize the image recognition and text recommendation system in this paper. Through the above work, this paper verifies the advantages of deep learning in image recognition and natural language processing from the point of view of engineering project application.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP391.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 楊志義;朱婭婷;蒲勇;;基于統(tǒng)一計(jì)算設(shè)備架構(gòu)技術(shù)的并行圖像處理研究[J];計(jì)算機(jī)測(cè)量與控制;2009年04期

2 沈艷軍,汪秉文,胡曉婭;多層前向神經(jīng)網(wǎng)絡(luò)帶正則化因子的算法[J];系統(tǒng)工程與電子技術(shù);2004年09期



本文編號(hào):1581352

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1581352.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ea839***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩中文字幕在线不卡一区| 在线观看免费无遮挡大尺度视频| 好吊日在线观看免费视频| 99久久精品国产麻豆| 麻豆视传媒短视频免费观看 | 国产三级不卡在线观看视频| 日本不卡在线一区二区三区| 中文字幕人妻综合一区二区| 夫妻性生活黄色录像视频| 婷婷伊人综合中文字幕| 亚洲三级视频在线观看免费| 国产免费黄片一区二区| 亚洲精品中文字幕熟女| 日本精品理论在线观看| 欧美日韩校园春色激情偷拍| 国产又粗又猛又长又大| 又色又爽又无遮挡的视频| 国产一级片内射视频免费播放 | 最近的中文字幕一区二区| 午夜精品在线观看视频午夜| 亚洲欧美日韩国产成人| 高清不卡一卡二卡区在线| 国产传媒欧美日韩成人精品| 精品国产品国语在线不卡| 太香蕉久久国产精品视频| 大香蕉伊人一区二区三区| 午夜亚洲少妇福利诱惑| 亚洲国产精品一区二区毛片| 男女激情视频在线免费观看| 亚洲成人精品免费在线观看 | 日本高清一道一二三区四五区| 色婷婷亚洲精品综合网| 中文字幕一区二区三区大片| 成人国产激情在线视频| 麻豆最新出品国产精品| 嫩草国产福利视频一区二区| 精品欧美国产一二三区| 美女被后入视频在线观看| 亚洲av在线视频一区| 欧美日韩国产精品黄片| 亚洲中文字幕三区四区|