零件幾何尺寸精密測(cè)量系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文關(guān)鍵詞: 圖像處理 亞像素 高精度 零件尺寸測(cè)量 批量測(cè)量 出處:《西南科技大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著生產(chǎn)與科技的發(fā)展,加工精度的提高和加工對(duì)象的變化,人們對(duì)測(cè)量精度、效率以及自動(dòng)化程度要求越來越高。實(shí)現(xiàn)零件形狀尺寸的快速、精確測(cè)量是零件幾何尺寸測(cè)量系統(tǒng)中最為關(guān)鍵的問題。本文針對(duì)傳統(tǒng)測(cè)量在小型、柔軟、形狀特異等零件測(cè)量上的不足,運(yùn)用亞像素邊緣檢測(cè)、圖像配準(zhǔn)、相機(jī)標(biāo)定等關(guān)鍵的計(jì)算機(jī)視覺技術(shù),開發(fā)通用零件尺寸高精度在線自動(dòng)化測(cè)量系統(tǒng)。主要工作如下:1、亞像素邊緣檢測(cè)算法研究。著重研究了基于亞像素檢測(cè)的邊緣定位技術(shù),設(shè)計(jì)實(shí)驗(yàn)對(duì)比擬合法、灰度矩和空間矩等亞像素檢測(cè)算法的精度和效率,定量分析影響精度的主要因素,選擇能滿足實(shí)時(shí)測(cè)量中精度、速度、穩(wěn)定性兼顧的亞像素檢測(cè)和邊緣定位算法。2、高精度零件圖像配準(zhǔn)算法設(shè)計(jì)。設(shè)計(jì)了一種基于質(zhì)心和最小外接矩形的快速高精度零件圖像配準(zhǔn)算法。分為初始配準(zhǔn)和精確配準(zhǔn),初始配準(zhǔn)通過利用零件最小外接矩形和圖像形心,縮減配準(zhǔn)參數(shù)范圍提高配準(zhǔn)速度。精確配準(zhǔn)將互信息作為相似度準(zhǔn)則提高配準(zhǔn)精度。實(shí)驗(yàn)結(jié)果表明本算法能同時(shí)在時(shí)間效率和匹配精度上達(dá)到批量測(cè)量的要求。3、零件幾何尺寸精密測(cè)量系統(tǒng)開發(fā)。分析了圖像測(cè)量系統(tǒng)的軟硬件結(jié)構(gòu),應(yīng)用基本的亞像素邊緣檢測(cè)、圖像配準(zhǔn)等技術(shù),設(shè)計(jì)開發(fā)出零件幾何尺寸測(cè)量系統(tǒng),具有單品測(cè)量、批量檢測(cè)、統(tǒng)計(jì)分析等功能。測(cè)試結(jié)果表明,系統(tǒng)重復(fù)測(cè)量精度能夠達(dá)到5μm。
[Abstract]:With the development of production and science and technology, the improvement of machining precision and the change of machining object, people demand more and more high measuring precision, efficiency and automation degree. Accurate measurement is the most important problem in the geometric dimension measurement system of parts. In this paper, the sub-pixel edge detection and image registration are used to solve the problems of traditional measurement in small, soft and shape specific parts. The key computer vision technology, such as camera calibration, is used to develop a high precision on-line automatic measuring system for the dimensions of common parts. The main work is as follows: 1, the research of sub-pixel edge detection algorithm, and the research of edge location technology based on sub-pixel detection. The precision and efficiency of sub-pixel detection algorithm, such as analogy method, gray moment and spatial moment, and quantitative analysis of the main factors affecting accuracy are designed, and the accuracy and speed of real-time measurement are selected. A stable sub-pixel detection and edge location algorithm .2. high precision part image registration algorithm is designed. A fast high-precision part image registration algorithm based on centroid and minimum external rectangle is designed, which is divided into initial registration and accurate registration. The initial registration is made by using the minimum external rectangle of the part and the center of the image, The precision of registration is improved by reducing the range of registration parameters and improving the registration speed by using the accurate matching information as the similarity criterion. The experimental results show that the algorithm can meet the requirements of batch measurement in both time efficiency and matching accuracy. The development of precise measuring system for geometric dimensions of parts. The hardware and software structure of the image measurement system is analyzed. Based on the basic techniques of sub-pixel edge detection and image registration, the geometric dimension measurement system of parts is designed and developed, which has the functions of single product measurement, batch detection, statistical analysis and so on. The test results show that the precision of repeated measurement of the system can reach 5 渭 m.
【學(xué)位授予單位】:西南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐中宇;寧闖;周亞洲;;一種快速亞像素邊緣檢測(cè)算法[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2014年02期
2 孫維健;;一種新的亞像素邊緣檢測(cè)算法[J];數(shù)字技術(shù)與應(yīng)用;2014年02期
3 付鵬;高曉蓉;;基于矩的亞像素邊緣檢測(cè)算法的對(duì)比研究[J];微計(jì)算機(jī)信息;2007年18期
4 張虎;達(dá)飛鵬;李勤;邢德奎;;橢圓目標(biāo)的亞像素邊緣定位方法研究[J];光學(xué)技術(shù);2010年01期
5 林欣堂;王宗義;;一種新的快速通用二維圖像亞像素邊緣檢測(cè)算法[J];應(yīng)用科技;2010年08期
6 詹林;劉秀珍;陳科澎;;亞像素邊緣定位在光纖中應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2010年06期
7 艾澤潭;石庚辰;代俊;;微零件圖像亞像素邊緣定位算法[J];北京理工大學(xué)學(xué)報(bào);2011年03期
8 李云;夏若安;;基于曲線擬和的亞像素邊緣檢測(cè)[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年06期
9 田原Z,
本文編號(hào):1505308
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1505308.html