天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于空間光調(diào)制的確定性相位恢復研究

發(fā)布時間:2018-02-09 15:16

  本文關鍵詞: 相位恢復 強度傳輸方程 空間光調(diào)制 相位調(diào)制 振幅調(diào)制 出處:《安徽大學》2017年碩士論文 論文類型:學位論文


【摘要】:光波場的性質(zhì)可以從三個方面來完全描述:振幅(亮度)、波長(顏色)和相位(一個波長內(nèi)相位等同于深度)。統(tǒng)計表明80%以上的信息保存在相位項中,由此可見,相對于強度等其他信息,相位信息顯得尤為重要。然而,光波場的振蕩頻率(約為1015Hz)遠高于現(xiàn)有最高速的光探測器幀頻(108Hz),探測器只能測量出光波場的強度變化,而無法直接探測到光波場的相位信息。因此,需要利用測量的強度分布來計算相位信息,即為相位恢復問題。目前,相位恢復已經(jīng)應用到光學測量、天文學成像、電子顯微學、自適應光學、光學相位顯微等眾多領域;趶姸葌鬏敺匠痰南辔换謴褪且环N典型的非干涉確定性相位恢復方法。該方程建立了光強度的軸向變化量與相位之間的定量關系,只需要測量物面的強度分布,就可以通過求解該方程直接計算出相位信息。相較于干涉相位恢復方法,基于強度傳輸方程的相位恢復不需要復雜的光學系統(tǒng),對于實驗環(huán)境要求不苛刻。另外,求解過程不需要迭代,且求解出的相位不需要解纏。然而,基于強度傳輸方程求解的結果存在分辨率低以及采集圖像時需要機械地移動成像器件CCD等缺點,易受到強度差分高階近似的非線性誤差和測量噪聲的影響,因而,限制了恢復結果的精度?臻g光調(diào)制器本質(zhì)上是一個適應性光學裝置,它能在波陣面上施加空間和時間變化調(diào)制,改變波陣面的振幅、相位和偏振。本文利用空間光調(diào)制器對光場調(diào)制的特性,將其應用到相位恢復的相關計算中,提出了新的相位恢復算法,搭建了相應的實驗平臺,獲得了具有高質(zhì)量的相位恢復結果。主要研究工作和創(chuàng)新點如下:(1)基于空間域相位調(diào)制的相位恢復,研究了基于傾斜光照合成的相位恢復算法。將空間光調(diào)制器放置在空間域中,加載不同角度的傾斜光柵對入射光場進行相位調(diào)制,并通過合成孔徑技術計算出相位,提高了恢復圖像的分辨率,獲得了具有高質(zhì)量的恢復結果。(2)基于空間域振幅調(diào)制的相位恢復,提出了基于余弦光柵調(diào)制和強度傳輸方程的相位恢復算法。將空間光調(diào)制器放置在空間域中,加載余弦光柵對入射光場進行振幅調(diào)制,利用獲取的強度圖像求解強度傳輸方程計算出相位偏導數(shù),進一步地由相位偏導數(shù)恢復出相位信息。并通過實驗驗證了該算法的有效性,實驗結果表明該算法可有效地抑制噪聲對恢復結果的影響。(3)基于頻率域振幅調(diào)制的相位恢復,提出了基于正弦光柵調(diào)制的相位恢復算法。將空間光調(diào)制器放置在頻率域中,加載正弦光柵對光場的振幅進行調(diào)制,通過強度與相位偏導數(shù)之間的關系計算出相位偏導數(shù),從而進一步獲得相位信息。設計了光學實驗平臺,可快速采集到強度圖像,避免了傳統(tǒng)方法中機械地移動成像器件造成的誤差,并利用采集的真實圖像計算出相位分布。模擬實驗與真實實驗結果驗證了該算法的正確性和有效性。
[Abstract]:The properties of the optical wave field can be described in three aspects: amplitude (luminance), wavelength (color) and phase (the phase within a wavelength is equal to depth). Statistics show that more than 80% information is stored in the phase term. Compared with other information, such as intensity, the phase information is particularly important. However, the oscillation frequency of the optical wave field (about 1015Hz) is much higher than the frame rate of the most high-speed photodetector (108Hz), and the detector can only measure the intensity change of the optical wave field. But the phase information of light wave field can not be detected directly. Therefore, it is necessary to use the intensity distribution of measurement to calculate the phase information, that is, phase recovery problem. At present, phase recovery has been applied to optical measurement, astronomical imaging, electron microscopy. Adaptive optics, optical phase microscopy and so on. The phase recovery based on the intensity transfer equation is a typical non-interference deterministic phase recovery method. The equation establishes the quantitative relationship between the axial variation of optical intensity and the phase. The phase information can be directly calculated by solving the equation by measuring the intensity distribution of the object surface. Compared with the interferometric phase recovery method, the phase recovery based on the intensity transmission equation does not require complex optical systems. The requirements for the experimental environment are not harsh. In addition, the solution process does not require iteration, and the phase of the solution does not require unwrapping. However, The results based on the intensity transfer equation have the disadvantages of low resolution and the need to move the imaging device CCD mechanically when collecting images, which are easily affected by the nonlinear error of high-order approximation of intensity difference and measurement noise. The spatial light modulator is essentially an adaptive optical device that can apply spatial and temporal modulation on the wavefront to change the amplitude of the wavefront. Based on the characteristics of spatial light modulator for light field modulation, this paper applies it to the calculation of phase recovery, proposes a new phase recovery algorithm, and builds a corresponding experimental platform. The results of phase recovery with high quality are obtained. The main work and innovations are as follows: 1) Phase recovery based on spatial phase modulation. The phase recovery algorithm based on tilted light synthesis is studied. The spatial light modulator is placed in the spatial domain, and the incident light field is modulated by a tilted grating with different angles, and the phase is calculated by the synthetic aperture technique. The resolution of the restored image is improved, and the phase recovery based on amplitude modulation in spatial domain is obtained. A phase recovery algorithm based on cosine grating modulation and intensity transfer equation is proposed. The spatial light modulator is placed in the spatial domain and cosine grating is loaded to modulate the incident light field. Using the obtained intensity image to solve the intensity transfer equation, the phase partial derivative is calculated, and the phase information is further recovered from the phase partial derivative. The validity of the algorithm is verified by experiments. Experimental results show that the proposed algorithm can effectively suppress the effect of noise on the recovery results. The phase recovery algorithm based on amplitude modulation in frequency domain is proposed. A phase recovery algorithm based on sinusoidal grating modulation is proposed. The spatial light modulator is placed in the frequency domain. The amplitude of light field is modulated by loading sinusoidal grating, the phase partial derivative is calculated by the relation between intensity and phase partial derivative, and the phase information is further obtained. The error caused by mechanical moving imaging device in the traditional method is avoided, and the phase distribution is calculated by using the collected real image. The correctness and validity of the algorithm are verified by the simulation and real experiment results.
【學位授予單位】:安徽大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN761;TP391.41

【相似文獻】

相關期刊論文 前10條

1 ;下期出版預告[J];現(xiàn)代顯示;2009年08期

2 王天及;楊世寧;李耀棠;張世超;范少武;溫煥榮;譚明業(yè);;空間光調(diào)制器的發(fā)展[J];光電子.激光;1988年03期

3 梁樂初,曹明翠;一種新型的電光空間光調(diào)制器的研究[J];量子電子學;1991年01期

4 李育林,趙明君,王昭;兩維實時空間光調(diào)制器[J];光電子·激光;1993年04期

5 李育林,,傅曉理;光折空間光調(diào)制器在光計算中的應用研究[J];量子電子學;1994年02期

6 潼澤國治,江濤;空間光調(diào)制器[J];紅外;1995年11期

7 ;空間調(diào)制器──實時光處理[J];激光與光電子學進展;1998年04期

8 宋菲君;空間光調(diào)制器物理和大屏幕投影電視產(chǎn)業(yè)[J];物理;2000年01期

9 胡曉改,薛唯;液晶純位相空間光調(diào)制器[J];激光與光電子學進展;2001年12期

10 鄧志鵬,楊杰,全勇;光尋址空間光調(diào)制器前置濾波[J];上海交通大學學報;2002年06期

相關會議論文 前10條

1 李艷輝;高岳;;基于空間光調(diào)制器的雙通道光學融合技術的研究[A];光電技術與系統(tǒng)文選——中國光學學會光電技術專業(yè)委員會成立二十周年暨第十一屆全國光電技術與系統(tǒng)學術會議論文集[C];2005年

2 馬進;何俊發(fā);王紅霞;;基于空間光調(diào)制器的聯(lián)合變換相關實驗系統(tǒng)的設計[A];2006年全國光電技術學術交流會會議文集(D 光電信息處理技術專題)[C];2006年

3 孔迪;李修建;楊建坤;劉菊;;光尋址空間光調(diào)制器復合膜電極的制備及性能分析[A];光電技術與系統(tǒng)文選——中國光學學會光電技術專業(yè)委員會成立二十周年暨第十一屆全國光電技術與系統(tǒng)學術會議論文集[C];2005年

4 馬百恒;姚保利;雷銘;嚴紹輝;郜鵬;閔俊偉;鄭娟娟;但旦;李澤;唐創(chuàng);段_";楊延龍;于湘華;郭榮禮;;利用空間光調(diào)制器動態(tài)相位全息圖產(chǎn)生三維光學結構[A];2011西部光子學學術會議論文摘要集[C];2011年

5 陳君;趙星;方志良;;基于純相位空間光調(diào)制器的復振幅調(diào)制研究[A];中國光學學會2010年光學大會論文集[C];2010年

6 田勁東;鄭劍峰;李東;;一種可以消除黑柵效應的純相位空間光調(diào)制[A];2010中國儀器儀表學術、產(chǎn)業(yè)大會(論文集1)[C];2010年

7 魯開源;何興道;;基于空間光調(diào)制器的灰度掩模制作環(huán)形光柵[A];第十一屆全國光學測試學術討論會論文(摘要集)[C];2006年

8 徐克t

本文編號:1498227


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1498227.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶6a641***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com