自校準(zhǔn)光譜輻射計(jì)信號(hào)采集及系統(tǒng)控制設(shè)計(jì)
本文關(guān)鍵詞:自校準(zhǔn)光譜輻射計(jì)信號(hào)采集及系統(tǒng)控制設(shè)計(jì) 出處:《中國科學(xué)技術(shù)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 自發(fā)參量下轉(zhuǎn)換 自校準(zhǔn) 符合測(cè)量 高速數(shù)據(jù)采集 LabVIEW
【摘要】:針對(duì)傳統(tǒng)輻射定標(biāo)精度已不能滿足定量應(yīng)用和氣候變化研究的迫切需求,課題組計(jì)劃研制一種基于自發(fā)參量下轉(zhuǎn)換,具有自校準(zhǔn)和輻射觀測(cè)兩種工作模式的光譜輻射計(jì)。本文主要解決該輻射計(jì)自動(dòng)化定標(biāo)及采集軟件精度驗(yàn)證方面的問題。根據(jù)測(cè)量需求設(shè)計(jì)了自校準(zhǔn)輻射計(jì)數(shù)據(jù)采集系統(tǒng)控制方案,基于LabVIEW語言編寫了自校準(zhǔn)輻射計(jì)數(shù)據(jù)采集系統(tǒng)控制軟件。自校準(zhǔn)模式能夠自動(dòng)定標(biāo)多個(gè)通道探測(cè)效率,觀測(cè)模式能夠同時(shí)獲得多個(gè)通道μs間隔的光子計(jì)數(shù)。自校準(zhǔn)模式時(shí),利用355nm激光泵浦BBO晶體,使用編寫的自校準(zhǔn)模式軟件定標(biāo)了APD在736nm波長點(diǎn)的量子效率為67.3%,測(cè)量的不確定度優(yōu)于0.71%,和APD出廠數(shù)據(jù)的相對(duì)偏差為1%;觀測(cè)模式時(shí),使用編寫的軟件采集0.1s時(shí)間內(nèi)APD輸出計(jì)數(shù)值,并和994計(jì)數(shù)器輸出值比較,平均相對(duì)偏差為0.22%,可以證明編寫的控制軟件能夠滿足系統(tǒng)的功能要求。設(shè)計(jì)了輻射計(jì)自校準(zhǔn)原理有效性驗(yàn)證實(shí)驗(yàn)方案,基于LabVIEW語言編寫了對(duì)應(yīng)的控制軟件。通過向光路中插入不同倍率的衰減片來模擬系統(tǒng)的衰變,選擇積分球出射的單色均勻光作為觀測(cè)光源,利用編寫的控制軟件測(cè)量不同衰減對(duì)應(yīng)的入瞳相對(duì)光譜輻亮度,相對(duì)偏差為2.39%,證明設(shè)計(jì)的自校準(zhǔn)輻射計(jì)反演的光譜輻亮度不隨系統(tǒng)的衰變而發(fā)生變化,系統(tǒng)具有自校準(zhǔn)功能。研制的自校準(zhǔn)光譜輻射計(jì)的最終目標(biāo)是作為可見~近紅外波段空間光學(xué)遙感器的輻射基準(zhǔn),對(duì)其它光學(xué)遙感器進(jìn)行定標(biāo)。因此論文最后分析了當(dāng)前數(shù)據(jù)采集系統(tǒng)的精度限制和體積限制,提出了一種基于時(shí)間數(shù)字轉(zhuǎn)換(TDC)的高精度和小型化的數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)方案。
[Abstract]:In view of the traditional radiometric calibration accuracy can no longer meet the urgent needs of quantitative applications and climate change research, the team plans to develop a kind of down-conversion based on spontaneous parameters. Spectral radiometer with two working modes of self calibration and radiation observation. This paper mainly solves the problems of automatic calibration of radiometer and precision verification of acquisition software. According to the requirement of measurement, the data of self calibration radiometer is designed. Control scheme of acquisition system. The control software of data acquisition system of self-calibrating radiometer is programmed based on LabVIEW language. The self-calibration mode can automatically calibrate the detection efficiency of multiple channels. In the self-calibrating mode, the BBO crystal is pumped by 355nm laser at the same time. The self-calibration mode software is used to calibrate the quantum efficiency of APD at 736nm wavelength, and the uncertainty of measurement is better than 0.71%. And the relative deviation of APD data is 1. In the observation mode, the APD output count value is collected in 0.1 s by using the software, and the average relative deviation is 0.22% compared with the output value of the 994 counter. It can be proved that the control software can meet the functional requirements of the system. An experimental scheme to verify the validity of the radiometer self-calibration principle is designed. The corresponding control software is compiled based on LabVIEW language. The decay of the system is simulated by inserting attenuation slices of different rates into the optical path, and the monochromatic uniform light emitted from the integral sphere is selected as the observation light source. The relative spectral radiance of different attenuation was measured with the control software, and the relative deviation was 2.39%. It is proved that the spectral radiance of the self-calibrated radiometer does not change with the decay of the system. The system has the function of self-calibration. The ultimate goal of the self-calibrated spectrometer is to be the radiation reference of the space optical remote sensor in the visible ~ near infrared band. Other optical remote sensors are calibrated. Finally, the accuracy and volume limitations of the current data acquisition system are analyzed. A design scheme of high precision and miniaturization data acquisition system based on time digital converter (TDC) is presented.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH74;TP274;TP311.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盛文陽;李健軍;夏茂鵬;龐偉偉;高冬陽;鄭小兵;;基于參量下轉(zhuǎn)換的3.39μm中紅外輻射源定標(biāo)實(shí)驗(yàn)[J];紅外與激光工程;2016年10期
2 張森;陶旭;馮志軍;吳淦華;薛莉;閆夏超;張蠟寶;賈小氫;王治中;孫俊;董光焰;康琳;吳培亨;;超導(dǎo)單光子探測(cè)器暗計(jì)數(shù)對(duì)激光測(cè)距距離的影響[J];物理學(xué)報(bào);2016年18期
3 董瑤海;;風(fēng)云四號(hào)氣象衛(wèi)星及其應(yīng)用展望[J];上海航天;2016年02期
4 胡友勃;李健軍;夏茂鵬;高冬陽;鄭小兵;;光子計(jì)數(shù)器的線性測(cè)量和修正[J];光子學(xué)報(bào);2016年06期
5 王玉鵬;胡秀清;王紅睿;葉新;方偉;;可在軌溯源的太陽反射波段光學(xué)遙感儀器輻射定標(biāo)基準(zhǔn)傳遞鏈路[J];光學(xué)精密工程;2015年07期
6 陳海東;史學(xué)舜;趙坤;劉長明;;基于LabVIEW的單光子探測(cè)器量子效率測(cè)控軟件設(shè)計(jì)[J];宇航計(jì)測(cè)技術(shù);2015年03期
7 王敏;何明元;張水平;陳曉穎;邱敏;;通道式可見光近紅外衛(wèi)星遙感器輻射定標(biāo)方法綜述[J];遙感信息;2014年01期
8 呂亮;張寅超;林延?xùn)|;;糾纏光子法絕對(duì)定標(biāo)光電探測(cè)器量子效率的研究[J];光學(xué)學(xué)報(bào);2012年01期
9 任建偉;麥鎮(zhèn)強(qiáng);萬志;李憲圣;李鳳有;;星上LED定標(biāo)光源的可行性研究[J];光學(xué)精密工程;2008年03期
10 張祥雪;張立;;單光子計(jì)數(shù)器的校驗(yàn)方法研究[J];光學(xué)技術(shù);2007年04期
相關(guān)博士學(xué)位論文 前2條
1 趙維寧;高精度可溯源SI在軌絕對(duì)光譜輻亮度定標(biāo)傳遞鏈路研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2016年
2 白云飛;自發(fā)參量下轉(zhuǎn)換制備單光子源及其測(cè)量與應(yīng)用研究[D];山西大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 王力;基于LabVIEW的高速數(shù)據(jù)采集系統(tǒng)的軟硬件設(shè)計(jì)[D];南京理工大學(xué);2013年
2 裴任;基于FPGA的高精度符合計(jì)數(shù)器設(shè)計(jì)[D];南京郵電大學(xué);2013年
3 盧萍;新型全光纖OCT實(shí)驗(yàn)系統(tǒng)的控制及數(shù)據(jù)采集[D];天津大學(xué);2007年
,本文編號(hào):1441145
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1441145.html