光場深度估計(jì)方法的對比研究
發(fā)布時(shí)間:2018-01-16 14:03
本文關(guān)鍵詞:光場深度估計(jì)方法的對比研究 出處:《模式識別與人工智能》2016年09期 論文類型:期刊論文
更多相關(guān)文章: 光場 深度估計(jì) 光照 極平面圖像 重聚焦
【摘要】:為了更有效地利用光場信息實(shí)現(xiàn)場景深度的精確估計(jì),文中回顧并深入探討光場的深度估計(jì)問題.通過闡述光場基本理論,將光場深度估計(jì)歸納為基于極平面圖像、多視角圖像及重聚焦的3種方法.在合成數(shù)據(jù)集上,對比光照變化對不同算法性能的影響,并構(gòu)建一個(gè)更全面且具有挑戰(zhàn)性的光場數(shù)據(jù)集.在該數(shù)據(jù)集、光場標(biāo)準(zhǔn)數(shù)據(jù)集及Lytro Dataset上,定性及定量分析不同復(fù)雜場景對算法性能的影響,進(jìn)一步指出該領(lǐng)域的研究方向.
[Abstract]:In order to use the light field information more effectively to realize the accurate depth estimation of the scene, the depth estimation problem of the light field is reviewed and discussed in this paper, and the basic theory of the light field is expounded. The depth estimation of light field is divided into three methods based on polar plane image, multi-view image and refocusing. The effects of illumination on the performance of different algorithms are compared on the composite dataset. A more comprehensive and challenging light field data set is constructed on the data set, optical field standard data set and Lytro Dataset. The effect of different complex scenes on the performance of the algorithm is analyzed qualitatively and quantitatively, and the research direction in this field is pointed out.
【作者單位】: 合肥工業(yè)大學(xué)計(jì)算機(jī)與信息學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(No.61403116,61271121) 中國博士后基金項(xiàng)目(No.2014M560507) 中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助~~
【分類號】:TP391.41
【正文快照】: Supported by National Natural Science Foundation of China(No.61403116,61271121),China Postdoctoral Science Foundation(No.2014M560507),Fundamental Research Funds for the Central Universities深度感知(Depth Perception)是指人眼對物體遠(yuǎn)近距離的感覺.人眼的深度,
本文編號:1433409
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1433409.html
最近更新
教材專著