線光在反射表面形貌測量中的關(guān)鍵技術(shù)研究
本文關(guān)鍵詞:線光在反射表面形貌測量中的關(guān)鍵技術(shù)研究 出處:《西南科技大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 反射表面形貌 激光三角法 條紋亞像素中心 橫向剪切干涉 同步偏振相移
【摘要】:表面形貌測量是產(chǎn)品質(zhì)量控制的關(guān)鍵任務(wù),直接決定產(chǎn)品的外觀特征及使用性能。目前測量朗伯表面形貌的技術(shù)已日趨成熟,但大多存在逐點(diǎn)測量速度慢、環(huán)境要求苛刻、測量范圍小、計(jì)算量大、具有映射多義性、易出現(xiàn)測量盲區(qū)等缺點(diǎn),難以用于反射表面的形貌測量。針對(duì)上述問題,對(duì)基于線光測量反射表面形貌的線激光三角法、橫向剪切干涉法、同步偏振相移法進(jìn)行了深入研究,主要研究成果如下:(1)將傳統(tǒng)斜射式激光三角法擴(kuò)展到反射表面形貌測量中,提出了一種高噪聲背景下激光條紋亞像素中心提取的方法。線光投射至反射表面,被表面形貌調(diào)制并變形,變形光場被屏幕和CCD相機(jī)接收后形成激光條紋圖像。采用高噪聲背景下條紋亞像素中心提取的方法,計(jì)算出激光條紋與參考平面條紋的中心偏移量,根據(jù)光源、被測表面、設(shè)備的三角幾何關(guān)系,解調(diào)出變形光場蘊(yùn)含的表面形貌信息。實(shí)驗(yàn)表明,條紋中心提取的好壞直接影響表面形貌測量的精度,線激光三角法測量反射表面形貌的誤差約為±0.25mm。(2)針對(duì)線激光三角法測量誤差大的問題,對(duì)María Frade等的橫向剪切干涉三維形貌儀進(jìn)行改進(jìn),設(shè)計(jì)了不包含柱面鏡和透鏡、僅包含透鏡的兩種反射表面形貌測量方案,消除柱面鏡和透鏡聯(lián)合使用引起的象散現(xiàn)象。利用Savart雙折射晶體橫向剪切展開線光,獲得干涉條紋圖像,采用傅里葉變換解析頻率,計(jì)算被測表面與設(shè)備傳感器之間的距離,僅需一幀圖像就可測量表面上一條輪廓線的形貌。實(shí)驗(yàn)表明,剪切干涉的自比較和共路共線特性增強(qiáng)了反射表面形貌測量的抗環(huán)境振動(dòng)和干擾能力,測量精度優(yōu)于30μm。(3)利用同步偏振相移技術(shù),解決了傅里葉變換解析圖像時(shí)測量精度受干涉信號(hào)離散、參數(shù)選取等因素限制的問題。在橫向剪切干涉反射表面形貌測量中,于Savart晶體后加入由1/4波片和偏振片組成的偏振移相裝置,用空間位置不同的CCD相機(jī)同時(shí)采集剪切干涉條紋圖像,經(jīng)四步相移和相位解包裹獲得相位斜率后,測量出反射表面的形貌。實(shí)驗(yàn)表明,由于剪切干涉抗環(huán)境干擾、相移抵消噪聲及同步采集消除分時(shí)誤差等優(yōu)點(diǎn),最終測量精度優(yōu)于20μm,測量出的形貌結(jié)果及其變化趨勢更接近真實(shí)值。
[Abstract]:Surface topography measurement is a key task of product quality control, which directly determines the appearance and performance of products. At present, Lambert surface morphology measurement technology has become more and more mature, but most of them have slow measurement speed point by point. The environmental requirements are harsh, the measurement range is small, the calculation is large, has the mapping polysemy, easy to appear the measurement blind area and so on the shortcoming, is difficult to use in the reflection surface topography measurement. The linear laser triangulation method, transverse shearing interferometry and synchronous polarization phase shift method based on linear light measurement of reflected surface morphology are studied in detail. The main research results are as follows: (1) the traditional oblique laser triangulation method is extended to the measurement of reflected surface topography. In this paper, a method of subpixel center extraction of laser stripes in high noise background is proposed. The line light is projected onto the reflected surface, which is modulated and deformed by the surface morphology. The distorted light field is received by the screen and CCD camera to form the laser stripe image. The center offset between the laser stripe and the reference plane fringe is calculated by using the method of extracting the sub-pixel center of the stripe in the high noise background. According to the triangular geometry of the light source, the measured surface and the equipment, the surface topography information contained in the deformed light field is solved. The experiment shows that the precision of the surface topography measurement is directly affected by the extraction of the fringe center. The error of line laser triangulation is about 鹵0.25mm. 2) aiming at the problem that the measurement error of linear laser triangulation is large. In this paper, the transverse shear interferometer of Mar 鉚 a Frade is improved, and two measuring schemes of reflecting surface topography without cylindrical mirror and lens are designed. In order to eliminate the astigmatism caused by the combined use of cylindrical mirror and lens, the interference fringe image is obtained by using the Savart birefringent crystal transverse shear to expand the line light, and the frequency is analyzed by Fourier transform. In order to calculate the distance between the measured surface and the device sensor, the profile of a contour line on the surface can be measured by only one frame of image. The self-comparison and collinear characteristics of shearing interferometry enhance the environmental vibration and interference resistance of the reflected surface topography measurement, and the measurement accuracy is better than 30 渭 m 路m3) by using synchronous polarization phase shift technique. It solves the problem that the measurement accuracy is limited by the interference signal discreteness and parameter selection when the Fourier transform is used to analyze the image. A polarization phase shifting device composed of 1/4 wave plates and polarizers is added to the Savart crystal, and the shearing interference fringe images are simultaneously collected by the CCD camera with different spatial positions. After the phase slope was obtained by four-step phase shift and phase unwrapping, the morphology of the reflected surface was measured. The experimental results show that the phase shift cancels the noise and the synchronous acquisition eliminates the time-sharing error due to the anti-environmental interference of the shearing interference. The final measurement accuracy is better than 20 渭 m, and the morphologies and their changing trends are closer to the true values.
【學(xué)位授予單位】:西南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 秦玉偉;;基于光學(xué)相干層析成像系統(tǒng)的表面形貌測量研究[J];激光雜志;2012年06期
2 劉卿卿;李海燕;浦昭邦;;光學(xué)法表面形貌測量技術(shù)[J];光電技術(shù)應(yīng)用;2008年02期
3 王移風(fēng);曹衍龍;徐朋;金鷺;楊將新;;表面形貌測量數(shù)據(jù)處理算法研究[J];中國機(jī)械工程;2013年06期
4 王海珊;史鐵林;廖廣蘭;劉世元;張文棟;;基于干涉顯微原理的表面形貌測量系統(tǒng)[J];光電工程;2008年07期
5 孫艷玲;;邁克爾遜干涉原理在表面形貌測量中的應(yīng)用研究[J];傳感器與微系統(tǒng);2006年07期
6 周明寶,林大鍵,郭履容,郭永康;通過數(shù)據(jù)處理實(shí)現(xiàn)微細(xì)臺(tái)階面的測量[J];中國激光;2000年03期
7 賽景波;非接觸納米三維表面形貌測量[J];應(yīng)用激光;2004年01期
8 ;[J];;年期
相關(guān)博士學(xué)位論文 前3條
1 王淑珍;基于白光干涉超精密表面形貌測量方法與系統(tǒng)研究[D];華中科技大學(xué);2010年
2 戴蓉;基于垂直掃描工作臺(tái)的白光干涉表面形貌測量系統(tǒng)研究[D];華中科技大學(xué);2007年
3 王青蒂;適用于大樣本高分辨三維成像的樹脂塊連續(xù)薄切片研究[D];華中科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 楊拓文;基于CPLD的表面形貌測量控制系統(tǒng)研制[D];華中科技大學(xué);2014年
2 王利;線光在反射表面形貌測量中的關(guān)鍵技術(shù)研究[D];西南科技大學(xué);2016年
3 袁博;小波包分析在表面形貌測量系統(tǒng)中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2006年
4 程偉林;偏振相移顯微干涉超精表面形貌測量研究[D];華中科技大學(xué);2011年
5 劉立偉;大范圍觸針掃描表面形貌測量儀的支撐及驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)[D];華中科技大學(xué);2013年
6 徐朋;白光波長掃描干涉表面形貌測量抗振技術(shù)研究[D];浙江大學(xué);2013年
7 鄒星龍;觸針掃描表面形貌測量儀軟件系統(tǒng)研究[D];華中科技大學(xué);2014年
8 金鷺;基于GPU的表面形貌測量系統(tǒng)的研究[D];浙江大學(xué);2011年
9 李其德;白光掃描干涉三維表面形貌測量技術(shù)的研究[D];合肥工業(yè)大學(xué);2008年
10 馮奎景;基于白光干涉原理的三維微表面形貌測量技術(shù)研究[D];華中科技大學(xué);2007年
,本文編號(hào):1424729
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1424729.html