天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > AI論文 >

compound artificial neural network transient stability asses

發(fā)布時間:2016-11-20 10:48

  本文關(guān)鍵詞:基于復(fù)合神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)暫態(tài)穩(wěn)定評估和裕度預(yù)測,由筆耕文化傳播整理發(fā)布。


基于復(fù)合神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)暫態(tài)穩(wěn)定評估和裕度預(yù)測

Power System Transient Stability Assessment and Stability Margin Prediction Based on Compound Neural Network

[1] [2] [3]

YAO Dequan, JIA Hongjie, ZHAO Shuai (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

智能電網(wǎng)教育部重點(diǎn)實驗室,天津大學(xué),天津市300072

文章摘要提出一種基于復(fù)合神經(jīng)網(wǎng)絡(luò)的暫態(tài)穩(wěn)定評估與故障臨界切除時間(CCT)裕度預(yù)測新方法,它將概率神經(jīng)網(wǎng)絡(luò)(PNN)和徑向基函數(shù)(RBF)網(wǎng)絡(luò)組合使用,充分利用兩者各自的優(yōu)點(diǎn),以提高暫態(tài)穩(wěn)定評估能力和CCT裕度預(yù)測能力。該方法首先利用PNN進(jìn)行暫態(tài)事故場景分類,分類時充分考慮了相鄰故障樣本類型重疊的影響;進(jìn)一步采用RBF網(wǎng)絡(luò)對分類結(jié)果進(jìn)行裕度預(yù)測;最后,通過自檢和校正以提高預(yù)測精度。利用NewEngland39節(jié)點(diǎn)系統(tǒng),通過與反向傳播(BP)神經(jīng)網(wǎng)絡(luò)、RBF神經(jīng)網(wǎng)絡(luò)等方法的比較,證明了本文方法的優(yōu)越性。

AbstrA method based on compound artificial neural network (ANN) to predict critical clearing time (CCT) margin and to do transient stability assessment is derived in this paper. It consists of probabilistic neural network (PNN) and radial basic function (RBF) network to integrate their advantages. PNN network is first used to classify sampling data and it can consider the overlapping influence in adjacent samples in the classification. Then RBF network is used to forecast the CCT margin based on the classification results. A self-checking procedure and an amending procedure are added to improve the prediction accuracy. New England 39 bus system is used to do the validation. Numerical studies reveal that the proposed method is better than the traditional BP and RBF methods not only on predictive accuracy but also on calculation speed. So the given method is helpful to power system transient stability assessment.

文章關(guān)鍵詞:

Keyword::compound artificial neural network transient stability assessment critical clearing time margin prediction classification overlapping

課題項目:國家重點(diǎn)基礎(chǔ)研究發(fā)展計劃(973計劃)資助項目(2009CB219701);國家自然科學(xué)基金資助項目(51277128);國家電網(wǎng)公司大電網(wǎng)重大專項資助項目(SGCC-MPLG028-2012).

 

 


  本文關(guān)鍵詞:基于復(fù)合神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)暫態(tài)穩(wěn)定評估和裕度預(yù)測,,由筆耕文化傳播整理發(fā)布。



本文編號:183347

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/183347.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ddd30***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com