基于駕駛意圖與行駛工況的混合動(dòng)力電動(dòng)汽車能量管理策略
[Abstract]:The energy management strategy of hybrid electric vehicle (Hybrid Electric Vehicle,HEV) is the key to affect the performance of hybrid electric vehicle (HEV). A reasonable and effective energy management strategy can improve the fuel economy of the whole vehicle. Based on a hybrid electric vehicle of a certain company, this paper relies on the project "matching and Control of heavy Hybrid Power system with double clutch Type single Motor" (51305468), supported by the National Natural Science Foundation of China. The energy management strategy of hybrid electric vehicle based on driving intention and driving condition is studied. The main contents are as follows: (1) this paper is based on the parameters of the key parts of the power system of a hybrid electric vehicle. In order to improve the fuel economy of the vehicle, the power system and the energy control strategy parameters of the hybrid electric vehicle are optimized by using a variety of different driving conditions. This paper presents a method of optimizing the parameters of hybrid electric vehicle power system and control strategy based on simulated annealing particle swarm optimization algorithm. The simulation model of the whole vehicle is built by using the MATLAB/SIMULINK simulation platform, and the simulation results show that a set of parameters can be obtained by using this method, and on the basis of maintaining the vehicle power performance and the balance of the battery SOC, the proposed control strategy optimization method is verified. Compared with before optimization, the fuel consumption is reduced by 5.49 in the comprehensive working condition. (2) there are some limitations in the optimization method based on multiple working conditions. And the existing energy management strategy based on condition identification does not fully consider the influence of the range of charged state of the power battery on the efficiency of the battery during the vehicle driving. The energy management strategy of HEV based on condition identification is studied. In this paper, 23 typical cycle conditions are selected from ADVISOR, which are divided into five categories by cluster analysis, and SOC equilibrium oil consumption is introduced into objective function. The simulated annealing particle swarm optimization algorithm is used to optimize the key parameters of energy management strategy under various operating conditions offline, and the database of optimization parameters is established. On the basis of this, an optimization method of energy management strategy based on condition identification is proposed. The energy management strategy is simulated and analyzed by using the constructed comprehensive test conditions. (3) considering the effect of driving intention on the energy consumption economy of the whole vehicle, The driving intention is analyzed and identified by the impact degree of the vehicle body and the average impact degree of the identification condition during the vehicle driving process, so as to determine the torque correction coefficient of the vehicle demand and make use of the fast transient response characteristics of the motor. The torque of motor is controlled, combined with the energy management strategy based on condition identification, a comprehensive energy management strategy based on driving intention and condition identification is established. The energy management strategy is simulated and analyzed by using the constructed comprehensive test conditions. The results show that compared with the single energy management strategy based on condition identification, the fuel consumption of the proposed integrated energy management strategy is 1.71% lower than that of the energy management strategy based on condition identification alone. At the same time, the energy recovery rate of the motor has been improved. (4) based on D2P platform and Matlab/Simulink/Stateflow development environment, the whole vehicle control software has been developed, and the data acquisition and calibration control system has been established by using ATI-VISION platform. The improved energy management strategy based on logic threshold is verified by real vehicle road test. The results show that the improved energy management strategy can distribute the torque between engine and motor and improve the economic performance of the whole vehicle. The effectiveness of the proposed strategy is partly verified.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U469.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛劍波;;輕度混合動(dòng)力汽車能量管理策略研究[J];上海汽車;2012年08期
2 趙廣耀;陳澤宇;杜志遠(yuǎn);陳偉強(qiáng);;串聯(lián)混合動(dòng)力汽車的能量管理策略[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
3 彭濤,陳全世;并聯(lián)混合動(dòng)力電動(dòng)汽車的模糊能量管理策略[J];中國(guó)機(jī)械工程;2003年09期
4 朱元,田光宇,陳全世,吳昊;混合動(dòng)力汽車能量管理策略的四步驟設(shè)計(jì)方法[J];機(jī)械工程學(xué)報(bào);2004年08期
5 朱元;吳志紅;田光宇;張涵;孫鴻航;;基于馬爾可夫決策理論的燃料電池混合動(dòng)力汽車能量管理策略[J];汽車工程;2006年09期
6 易綱;常思勤;;基于模糊神經(jīng)預(yù)測(cè)的新型電控液驅(qū)車輛的能量管理策略研究[J];機(jī)床與液壓;2006年11期
7 舒紅;劉文杰;袁景敏;高銀平;;混聯(lián)型混合動(dòng)力汽車能量管理策略優(yōu)化[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2009年03期
8 張博;鄭賀悅;王成;;可外接充電混合動(dòng)力汽車能量管理策略[J];機(jī)械工程學(xué)報(bào);2011年06期
9 肖仁鑫;李濤;鄒敢;秦穎;;基于隨機(jī)動(dòng)態(tài)規(guī)劃的混聯(lián)式混合動(dòng)力汽車能量管理策略[J];汽車工程;2013年04期
10 秦大同;彭志遠(yuǎn);劉永剛;段志輝;楊陽(yáng);;基于工況識(shí)別的混合動(dòng)力汽車動(dòng)態(tài)能量管理策略[J];中國(guó)機(jī)械工程;2014年11期
相關(guān)會(huì)議論文 前6條
1 王旭峰;彭飛;冒波波;陳維榮;;基于模糊優(yōu)化的功率跟隨式能量管理策略研究[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)A卷[C];2011年
2 彭然;張繼業(yè);宋鵬云;陳彥秋;;列車復(fù)合電源系統(tǒng)能量管理策略的研究[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
3 謝鑫;;基于動(dòng)態(tài)規(guī)劃算法的串聯(lián)混合動(dòng)力汽車能量管理策略[A];2012重慶汽車工程學(xué)會(huì)年會(huì)論文集[C];2012年
4 謝鑫;;基于動(dòng)態(tài)規(guī)劃算法的串聯(lián)混合動(dòng)力汽車能量管理策略[A];西南汽車信息:2012年上半年合刊[C];2012年
5 裴春松;;SLG6107PHEV型增程式電動(dòng)汽車能量管理策略[A];2012重慶汽車工程學(xué)會(huì)年會(huì)論文集[C];2012年
6 高明明;王智晶;孟甲凡;;混合動(dòng)力汽車轉(zhuǎn)矩分配策略研究[A];自主創(chuàng)新、學(xué)術(shù)交流——第十屆河南省汽車工程科學(xué)技術(shù)研討會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 王光平;并聯(lián)插電式混合動(dòng)力汽車控制技術(shù)研究[D];吉林大學(xué);2016年
2 詹森;基于工況與駕駛風(fēng)格識(shí)別的混合動(dòng)力汽車能量管理策略研究[D];重慶大學(xué);2016年
3 李衛(wèi)民;混合動(dòng)力汽車控制系統(tǒng)與能量管理策略研究[D];上海交通大學(xué);2008年
4 楊官龍;基于駕駛意圖與工況識(shí)別的插電式混合動(dòng)力汽車能量管理策略研究[D];重慶大學(xué);2014年
5 張博;可外接充電混合動(dòng)力汽車能量管理策略研究[D];吉林大學(xué);2009年
6 吳劍;并聯(lián)式混合動(dòng)力汽車能量管理策略優(yōu)化研究[D];山東大學(xué);2008年
7 張冰戰(zhàn);插電式混合動(dòng)力電動(dòng)汽車能量管理策略研究[D];合肥工業(yè)大學(xué);2011年
8 馮代偉;串聯(lián)型液壓混合動(dòng)力汽車的能量管理策略研究[D];電子科技大學(xué);2012年
9 顧杰;增程式電動(dòng)汽車能量管理策略研究[D];合肥工業(yè)大學(xué);2013年
10 舒紅;并聯(lián)型混合動(dòng)力汽車能量管理策略研究[D];重慶大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 方越棟;基于隨機(jī)動(dòng)力需求預(yù)測(cè)的混合動(dòng)力公交車能量管理策略[D];浙江大學(xué);2015年
2 吳佳駿;四輪輪轂電動(dòng)車能量管理策略研究[D];電子科技大學(xué);2014年
3 秦亞斌;微電網(wǎng)控制與能量管理策略的研究[D];太原理工大學(xué);2013年
4 張杰;無(wú)人車節(jié)能技術(shù)的研究和實(shí)現(xiàn)[D];西安工業(yè)大學(xué);2013年
5 李訓(xùn)明;并聯(lián)式混合動(dòng)力汽車能量分配策略優(yōu)化研究[D];山東理工大學(xué);2015年
6 石大排;基于行星齒輪傳動(dòng)的插電式混合動(dòng)力汽車能量管理策略研究[D];山東理工大學(xué);2015年
7 盧立來(lái);基于路況信息預(yù)測(cè)的插電式混合動(dòng)力汽車能量管理策略研究[D];重慶大學(xué);2015年
8 黃美婷;雙源無(wú)軌電車的能量管理策略研究[D];北京交通大學(xué);2016年
9 王坤玉;基于粒子群算法的增程式電動(dòng)汽車能量管理策略研究[D];東北大學(xué);2014年
10 張潔麗;基于模型預(yù)測(cè)控制的插電式混合動(dòng)力客車能量管理策略研究[D];北京理工大學(xué);2016年
,本文編號(hào):2388477
本文鏈接:http://sikaile.net/kejilunwen/qiche/2388477.html