基于無跡卡爾曼濾波算法的動力電池剩余電量估算
[Abstract]:In recent years, electric vehicles (EVs) have become the ideal vehicle to realize low emission and zero emission due to their advantages of cleanliness, high efficiency, no pollution and so on. The performance of battery pack on electric vehicle is a direct factor affecting the performance of the whole vehicle, such as the range of the vehicle, the acceleration performance and the efficiency of braking energy recovery. The estimation of charge state (State of Charge,SoC is the key function of the battery management system (Battery Management System,BMS) and the key to the reliability and safety of the battery. The main contents of this paper are as follows: firstly, the structure and working principle of lithium ion battery are introduced, the definition of charged state (SoC) is expounded, and several commonly used estimation methods are compared and analyzed. Then the Kalman filter method, which is used in this paper, is given. Then, in order to improve the accuracy of SoC estimation, and to accurately simulate and simulate the characteristics of the battery and the state and behavior in the working process. On the premise of easy hardware implementation, the battery model combining Thevenin model with second-order RC circuit is established, and the parameters of the model are identified by using the battery HPPC experimental data. The battery model is used to verify the parameter identification results, and the forgetting factor recursive least square method is used to identify the model parameters online. The results of off-line identification are compared and analyzed. This method can effectively improve the accuracy of model parameters. Finally, the unscented Kalman filter algorithm and adaptive matching noise are used to estimate the charge state (SoC) of the battery, and the simulation results are compared with the actual measurement results. The effectiveness of the proposed method is verified under constant current discharge conditions.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U469.72
【參考文獻】
相關(guān)期刊論文 前10條
1 黃兵鋒;楊正才;傅佳宏;;基于六參數(shù)RC等效電路模型的鋰離子電池SOC估計[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2015年05期
2 李洪宇;張曉強;張衛(wèi)平;;大容量鋰離子電池SOC估算原理及應(yīng)用[J];電源技術(shù);2015年05期
3 么居標(biāo);呂江毅;任小龍;;基于無跡卡爾曼濾波的動力電池荷電狀態(tài)估計[J];電源技術(shù);2014年09期
4 侯俊;朱長青;閻海峰;高社生;;Sage-Husa隨機加權(quán)無跡卡爾曼濾波及其在導(dǎo)航中的應(yīng)用[J];導(dǎo)航定位學(xué)報;2014年01期
5 魏克新;陳峭巖;;基于自適應(yīng)無跡卡爾曼濾波算法的鋰離子動力電池狀態(tài)估計[J];中國電機工程學(xué)報;2014年03期
6 孫楓;唐李軍;;Cubature卡爾曼濾波與Unscented卡爾曼濾波估計精度比較[J];控制與決策;2013年02期
7 熊瑞;何洪文;許永莉;何銀;;電動汽車用動力電池組建模和參數(shù)辨識方法[J];吉林大學(xué)學(xué)報(工學(xué)版);2012年04期
8 熊瑞;孫逢春;何洪文;;自適應(yīng)卡爾曼濾波器在車用鋰離子動力電池SOC估計上的應(yīng)用[J];高技術(shù)通訊;2012年02期
9 熊瑞;何洪文;丁銀;;HEV用鋰離子電池動態(tài)模型參數(shù)辨識方法研究[J];電力電子技術(shù);2011年04期
10 時瑋;姜久春;李索宇;賈容達;;磷酸鐵鋰電池SOC估算方法研究[J];電子測量與儀器學(xué)報;2010年08期
,本文編號:2319778
本文鏈接:http://sikaile.net/kejilunwen/qiche/2319778.html