天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 汽車論文 >

外形參數(shù)對(duì)純電動(dòng)轎車氣動(dòng)阻力的影響研究

發(fā)布時(shí)間:2018-06-01 13:25

  本文選題:純電動(dòng)轎車 + 氣動(dòng)阻力; 參考:《吉林大學(xué)》2016年碩士論文


【摘要】:面臨環(huán)境及能源的雙重壓力,綠色能源日益成為未來(lái)發(fā)展的總趨勢(shì),零排放、無(wú)污染的純電動(dòng)汽車受到越來(lái)越多的青睞。但目前由于配套設(shè)施不完善、續(xù)駛里程難以滿足人們?nèi)粘K璧葐?wèn)題,發(fā)展受到了嚴(yán)重的制約。相較于增大其本身的電池能量密度以提高續(xù)航能力而言,降低由汽車外形引起的氣動(dòng)阻力,從而提高純電動(dòng)汽車的續(xù)駛里程更不失為一種節(jié)能環(huán)保的好途徑。本文選取純電動(dòng)轎車進(jìn)行針對(duì)性的外形參數(shù)氣動(dòng)阻力影響研究。由于純電動(dòng)轎車與傳統(tǒng)型轎車在動(dòng)力與傳動(dòng)技術(shù)等方面的差異,引起了車身結(jié)構(gòu)的區(qū)別,因此在面臨新的條件與限制因素的情況下,有必要對(duì)其進(jìn)行重新的車身總布置研究,近一步研究這些外形參數(shù)對(duì)純電動(dòng)轎車氣動(dòng)阻力的影響。首先,本文對(duì)純電動(dòng)轎車的主要尺寸、分布及功用進(jìn)行總結(jié),并探討在傳統(tǒng)轎車以及全新純電動(dòng)轎車構(gòu)架下的電池布置形式的優(yōu)劣勢(shì),在滿足中級(jí)轎車車身總布置結(jié)構(gòu)條件下,給出了純電動(dòng)轎車的空氣動(dòng)力學(xué)研究尺寸空間。本文選用Driv Aer轎車模型作為具體研究對(duì)象,以汽車風(fēng)洞實(shí)驗(yàn)數(shù)據(jù)為基準(zhǔn),確定轎車外流場(chǎng)數(shù)值仿真方案的各參數(shù),奠定全文數(shù)值仿真的研究基礎(chǔ)。在此基礎(chǔ)上對(duì)轎車外流場(chǎng)進(jìn)行氣動(dòng)特性分析,提出影響純電動(dòng)轎車氣動(dòng)阻力的外形參數(shù);诩冸妱(dòng)轎車外形的空氣動(dòng)力學(xué)研究空間,以及所提出的影響氣動(dòng)阻力的外形參數(shù),對(duì)純電動(dòng)轎車進(jìn)行整體最佳化研究,選用車身橫縱截面曲線上的七個(gè)參數(shù)控制關(guān)鍵點(diǎn)作為整體設(shè)計(jì)的參數(shù)變量,進(jìn)行了二十組最優(yōu)拉丁超立方試驗(yàn)設(shè)計(jì),利用三種近似模型建立參數(shù)變量與目標(biāo)函數(shù)之間的響應(yīng)關(guān)系,進(jìn)行可信性分析后,確定R2值為0.950(超過(guò)標(biāo)準(zhǔn)值0.9)的克里金近似模型為本方案最佳近似模型,并進(jìn)一步利用自適應(yīng)模擬退火算法進(jìn)行方案尋優(yōu)。經(jīng)過(guò)尋優(yōu)后最優(yōu)方案預(yù)測(cè)值與實(shí)際CFD計(jì)算值之間的誤差值僅為0.46%,在可接受范圍內(nèi)。經(jīng)過(guò)整體最佳化后的純電動(dòng)轎車整車氣動(dòng)阻力系數(shù)(9值由0.25883降至0.23592,降低了8.85%。在整體最佳化研究的基礎(chǔ)上,又進(jìn)行了細(xì)部?jī)?yōu)化的研究。選取車頭、車頂、車尾三處分別建立控制體,共設(shè)置八個(gè)參數(shù)變量進(jìn)行研究。選用最優(yōu)拉丁超立方試驗(yàn)設(shè)計(jì)方法設(shè)計(jì)了六十組方案,同樣經(jīng)過(guò)可信性分析后確定R2值為0.975的克里金近似模型為最佳近似模型,并進(jìn)一步利用自適應(yīng)退火算法對(duì)方案尋優(yōu)。最終所確定的尋優(yōu)方案預(yù)測(cè)值與實(shí)際計(jì)算值之間的誤差值為僅0.45%在可接受范圍內(nèi)。經(jīng)細(xì)部?jī)?yōu)化后,流線型系數(shù)Cd*A由0.50793降至0.48438,降低了4.64%;最終方案較原車型的氣動(dòng)阻力系數(shù)Cd值降低了13.58%,流線型系數(shù)Cd*A值降低了13.13%。綜上,基于對(duì)純電動(dòng)轎車空氣動(dòng)力學(xué)研究空間,在全新構(gòu)架下對(duì)其進(jìn)行外形參數(shù)的氣動(dòng)阻力研究,整體最佳化與細(xì)部?jī)?yōu)化均取得了良好的降阻效果,說(shuō)明純電動(dòng)轎車仍有很大的降阻空間,而對(duì)各外形參數(shù)結(jié)果的分析也將對(duì)純電動(dòng)轎車今后的氣動(dòng)阻力研究做出有益鋪墊。
[Abstract]:Facing the dual pressure of environment and energy, green energy is increasingly becoming the general trend of future development. The zero emission and pollution-free electric vehicles are becoming more and more popular. However, due to the imperfect supporting facilities, the driving range is difficult to meet people's daily needs and other problems, and the development has been severely restricted. In order to improve the battery energy density, it is a good way to reduce the aerodynamic drag caused by the shape of the car, so as to improve the driving range of the pure electric vehicle, it is a good way to save energy and environmental protection. In this paper, a pure electric car is selected to study the effect of the aerodynamic drag on the specific parameters of the car. The difference between power and transmission technology causes the difference between the body structure, so in the face of new conditions and restrictions, it is necessary to study the general layout of the body, and study the impact of these parameters on the aerodynamic drag of a pure electric car. First, the main dimensions of the pure electric car are in this paper. The distribution and function are summarized, and the advantages and disadvantages of the battery layout in the traditional car and the new pure electric car frame are discussed. The aerodynamic size space of the pure electric car is given under the condition of meeting the general layout of the medium car body, and the Driv Aer car model is selected as the specific research object. According to the experimental data of the car wind tunnel, the parameters of the numerical simulation scheme of the car outflow field are determined, and the research foundation of the full text numerical simulation is laid. On the basis of this, the aerodynamic characteristics of the car outflow field are analyzed, and the aerodynamic drag of the pure electric car is proposed. The overall optimization of the pure electric car is studied and the seven key control points on the cross section curve of the body are selected as the parameter variables of the whole design. Twenty sets of optimal Latin hypercube test are designed, and the parameter variables and the target functions are established with three approximate models. After the analysis of the response relationship between the numbers, the Krikin approximation model with the R2 value of 0.950 (exceeding the standard value 0.9) is the best approximate model of the scheme, and the adaptive simulated annealing algorithm is further used to optimize the scheme. The error value between the optimal scheme and the actual CFD value is only 0.46% after optimization. In the acceptable range, the aerodynamic drag coefficient of a pure electric car after the overall optimization (9 values decreased from 0.25883 to 0.23592, reduced the study of 8.85%. on the basis of the overall optimization, and then carried out a detailed optimization study. The control bodies were set up in three parts of the car head, the roof and the tail of the car respectively, and the selection of eight parameter variables was studied. " Sixty groups of schemes are designed with the optimal Latin hypercube test design method. The Kriging approximate model with the R2 value of 0.975 is determined as the best approximation model after the reliability analysis, and the adaptive annealing algorithm is further used to optimize the scheme. The error value between the premeasured value and the actual calculated value is only 0. .45% is within the acceptable range. After optimization, the streamline coefficient Cd*A is reduced from 0.50793 to 0.48438, which is reduced by 4.64%. The final scheme is lower than the original model's aerodynamic drag coefficient Cd value by 13.58%, the streamline coefficient Cd*A value is reduced in 13.13%., based on the aerodynamic research space of the pure electric car, and under the new framework, it is carried out under the new frame. The aerodynamic drag of the shape parameters, the overall optimization and the detail optimization have achieved a good drag reduction effect. It shows that the pure electric car still has a large drag reduction space, and the analysis of the results of the various parameters will also make a useful paving for the study of the aerodynamic drag of the pure electric car in the future.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U461.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曉徐;電動(dòng)轎車離我們有多遠(yuǎn)[J];上海汽車;2000年04期

2 郭明;電動(dòng)轎車用稀土永磁無(wú)刷直流電機(jī)驅(qū)動(dòng)系統(tǒng)的研制[J];航空制造技術(shù);2001年04期

3 王林;日本電動(dòng)轎車向微型發(fā)展[J];汽車維修;2001年04期

4 ;新型無(wú)污染電動(dòng)轎車[J];軍民兩用技術(shù)與產(chǎn)品;2002年12期

5 曹衛(wèi)民;;加快太陽(yáng)能混合電動(dòng)轎車的開(kāi)發(fā),迎接國(guó)民車時(shí)代的到來(lái)(二)——論太陽(yáng)能混合電動(dòng)轎車的開(kāi)發(fā)[J];輕型汽車技術(shù);2005年Z2期

6 張慶文;韓忠浩;薛盛興;;電動(dòng)轎車造型如何融合中國(guó)元素[J];遼寧工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期

7 ;電動(dòng)轎車無(wú)線充電正逐步走向可能[J];農(nóng)業(yè)裝備與車輛工程;2012年06期

8 Dieter Gudjons;倪曲;;電動(dòng)轎車生產(chǎn)技術(shù)現(xiàn)狀[J];廣東科技;1994年01期

9 ;新型電動(dòng)轎車[J];汽車工藝與材料;1995年05期

10 王利公;電動(dòng)轎車——二十一世紀(jì)的選擇[J];中國(guó)技術(shù)監(jiān)督;1995年10期

相關(guān)會(huì)議論文 前1條

1 伍理勛;李曉光;郭淑英;張逸成;陶生桂;姚勇濤;;燃料電池電動(dòng)轎車主DC/DC電源裝置的研制[A];2002中國(guó)電動(dòng)汽車研究與開(kāi)發(fā)[C];2002年

相關(guān)重要報(bào)紙文章 前10條

1 戴樹(shù)超邋王召華 祝麗娜;武城“柯萊沃”電動(dòng)轎車搶灘美國(guó)[N];德州日?qǐng)?bào);2007年

2 洪敬譜;電動(dòng)轎車無(wú)牌上路隱患多[N];中國(guó)消費(fèi)者報(bào);2008年

3 房士閣;時(shí)風(fēng)電動(dòng)轎車通過(guò)專家評(píng)審驗(yàn)收[N];中國(guó)工業(yè)報(bào);2008年

4 房士閣邋本報(bào)記者 許繼升;時(shí)風(fēng)駛出“人民轎車”[N];中國(guó)縣域經(jīng)濟(jì)報(bào);2008年

5 周文明;適應(yīng)節(jié)能減排時(shí)風(fēng)推出電動(dòng)轎車[N];消費(fèi)日?qǐng)?bào);2008年

6 丁玲娜;皖產(chǎn)鐵鋰電動(dòng)轎車京城受青睞[N];安徽日?qǐng)?bào);2008年

7 凌軍輝;買了電動(dòng)轎車為什么不敢上路[N];經(jīng)濟(jì)參考報(bào);2008年

8 記者 董學(xué)清;中國(guó)產(chǎn)電動(dòng)轎車進(jìn)入美國(guó)市場(chǎng)[N];人民日?qǐng)?bào)海外版;2009年

9 凌軍輝;電動(dòng)轎車不敢上路[N];中國(guó)質(zhì)量報(bào);2008年

10 建春 江萱 季煜;揚(yáng)州電動(dòng)轎車亮相氣候大會(huì)[N];揚(yáng)州日?qǐng)?bào);2009年

相關(guān)博士學(xué)位論文 前1條

1 方運(yùn)舟;純電動(dòng)轎車制動(dòng)能量回收系統(tǒng)研究[D];合肥工業(yè)大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 張會(huì)真;純電動(dòng)轎車傳動(dòng)系統(tǒng)優(yōu)化與仿真[D];河北工業(yè)大學(xué);2015年

2 薛明欣;外形參數(shù)對(duì)純電動(dòng)轎車氣動(dòng)阻力的影響研究[D];吉林大學(xué);2016年

3 付成偉;電動(dòng)轎車用電機(jī)控制系統(tǒng)研究[D];吉林大學(xué);2010年

4 劉小飛;純電動(dòng)轎車動(dòng)力系統(tǒng)參數(shù)匹配及電機(jī)控制策略研究[D];吉林大學(xué);2011年

5 詹沛枝;微型電動(dòng)轎車的建模方法與仿真分析[D];廣東工業(yè)大學(xué);2011年

6 王澤平;電動(dòng)轎車總體設(shè)計(jì)與性能仿真研究[D];合肥工業(yè)大學(xué);2007年

7 吳雪;純電動(dòng)轎車動(dòng)力系統(tǒng)參數(shù)匹配方法研究[D];吉林大學(xué);2013年

8 付雅軍;電動(dòng)轎車用永磁同步電機(jī)的溫度場(chǎng)分析[D];遼寧工業(yè)大學(xué);2014年

9 劉健;純電動(dòng)轎車驅(qū)動(dòng)電機(jī)性能與結(jié)構(gòu)參數(shù)匹配研究[D];吉林大學(xué);2014年

10 董欣陽(yáng);增程式電動(dòng)轎車動(dòng)力系統(tǒng)控制策略設(shè)計(jì)及優(yōu)化研究[D];合肥工業(yè)大學(xué);2015年

,

本文編號(hào):1964332

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/qiche/1964332.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e57fd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com