塑料斜齒輪鋼制蝸桿傳動強(qiáng)度與傳動性能研究
本文選題:斜齒輪 + 蝸桿; 參考:《吉林大學(xué)》2016年碩士論文
【摘要】:斜齒輪蝸桿傳動機(jī)構(gòu)傳動比大、傳動平穩(wěn)、可自鎖,用來傳遞空間交錯兩軸的動力。塑料斜齒輪設(shè)計簡單、易于加工、重量輕、自潤滑性好、噪音小、制造成本低,廣泛應(yīng)用于汽車、機(jī)械、家電等領(lǐng)域。因此,關(guān)于塑料斜齒輪鋼制蝸桿傳動機(jī)構(gòu)的研究,有重要的應(yīng)用價值。本文以“小型乘用車自動控制離合器系統(tǒng)”項目為基礎(chǔ),項目編號為:2012GH710902,主要對塑料斜齒輪鋼制蝸桿傳動機(jī)構(gòu)設(shè)計參數(shù)、傳動效率、自鎖性進(jìn)行理論與試驗研究,對其齒面應(yīng)力進(jìn)行動態(tài)有限元分析,為斜齒輪蝸桿傳動機(jī)構(gòu)的參數(shù)設(shè)計、材料選擇、工藝選取等提供指導(dǎo),具有實用價值。通過分析斜齒輪蝸桿傳動輸入、輸出功率的方法,研究了斜齒輪蝸桿傳動效率、傳動條件、自鎖條件,分析了壓力角、螺旋角、摩擦系數(shù)對傳動效率和自鎖性的影響。進(jìn)行了傳動效率、自鎖性能測試試驗。研究結(jié)果表明,摩擦系數(shù)增大,傳動效率降低,自鎖性增強(qiáng);螺旋角增大,傳動效率提高,自鎖性減弱;壓力角增大,傳動效率降低,自鎖性增強(qiáng)。當(dāng)螺旋角約為5.2°,摩擦系數(shù)約為0.09時,是斜齒輪蝸桿傳動自鎖的臨界參考值。斜齒輪蝸桿傳動設(shè)計參數(shù)對傳動效率、自鎖性影響的研究結(jié)果在參數(shù)設(shè)計階段對衡量蝸桿傳動機(jī)構(gòu)傳動效率、自鎖性有指導(dǎo)意義。本文對某車型自動控制離合器系統(tǒng)塑料斜齒輪鋼制蝸桿傳動機(jī)構(gòu)進(jìn)行了動態(tài)有限元分析,研究了塑料斜齒輪嚙合過程中齒面應(yīng)力分布、變化情況。斜齒輪齒數(shù)為69,壓力角為10.5°,螺旋角為5.16°時,斜齒輪蝸桿傳動機(jī)構(gòu)有三個齒為主要嚙合齒,齒面最大應(yīng)力變化較小;斜齒輪齒面嚙合點由齒頂向齒根移動,臨近齒根后又沿嚙合點軌跡向齒頂方向移動較小位移,嚙合點軌跡與斜齒輪端面呈一定角度;斜齒輪在靠近齒根部位接觸應(yīng)力較高;斜齒輪材料彈性模量越小,輪齒完成嚙合的時間越長。本文的研究工作可為企業(yè)開展齒輪、蝸桿傳動產(chǎn)品的仿真分析工作提供參考。按本文參數(shù)選擇方法設(shè)計的塑料斜齒輪鋼制蝸桿傳動機(jī)構(gòu),已應(yīng)用在企業(yè)某車型自動控制離合器系統(tǒng)中,在機(jī)械強(qiáng)度、傳動性能上都能滿足使用要求。本文研究的斜齒輪蝸桿傳動設(shè)計參數(shù)對傳動效率和自鎖性的影響規(guī)律、動態(tài)接觸有限元分析流程,已應(yīng)用于企業(yè)蝸桿傳動新產(chǎn)品研發(fā)中,對齒輪、蝸桿傳動系列產(chǎn)品的開發(fā)有指導(dǎo)意義。
[Abstract]:The helical gear worm drive mechanism has the advantages of large transmission ratio, stable transmission and self-locking, which is used to transfer the power of space staggered two axes. Plastic helical gears are simple in design, easy to process, light in weight, good in self-lubricity, low in noise, low in manufacturing cost, and widely used in automobile, machinery, household appliances and other fields. Therefore, the study of plastic helical gear steel worm transmission mechanism has important application value. Based on the project of "automatic clutch control system for small passenger cars", the project number is: 2012GH710902. The design parameters, transmission efficiency and self-locking property of worm drive mechanism made of plastic helical gear and steel are studied theoretically and experimentally in this paper. The dynamic finite element analysis of tooth surface stress provides guidance for parameter design, material selection and process selection of helical gear worm drive mechanism. It is of practical value. By analyzing the input and output power of helical gear worm transmission, the transmission efficiency, transmission conditions and self-locking conditions of helical gear worm drive are studied. The influence of pressure angle, spiral angle and friction coefficient on transmission efficiency and self-locking property are analyzed. The transmission efficiency and self-locking performance were tested. The results show that the friction coefficient increases, the transmission efficiency decreases and the self-locking property increases; the spiral angle increases, the transmission efficiency increases and the self-locking property weakens; the pressure angle increases, the transmission efficiency decreases, and the self-locking property increases. When the helical angle is about 5.2 擄and the friction coefficient is about 0.09, it is a critical reference value for helical gear worm drive self-locking. The results of the study on the influence of the design parameters of helical gear worm drive on transmission efficiency and self-locking are of guiding significance in the stage of parameter design for measuring the transmission efficiency and self-locking of worm transmission mechanism. In this paper, the dynamic finite element analysis of the plastic helical gear steel worm drive mechanism in the automatic control clutch system of a vehicle is carried out, and the stress distribution and variation of the tooth surface during the meshing process of the plastic helical gear are studied. When the number of helical gear teeth is 69, the pressure angle is 10.5 擄, and the helical angle is 5.16 擄, the helical gear worm drive mechanism has three teeth as the main meshing teeth, the maximum stress of the tooth surface is small, and the meshing point of the helical gear tooth surface moves from the top of the tooth to the root of the tooth. Near the root of the tooth, it moves a little displacement along the trajectory of the meshing point to the top of the tooth, and the trajectory of the meshing point is at a certain angle with the end face of the helical gear, the contact stress of the helical gear near the root of the tooth is higher, the elastic modulus of the helical gear material is smaller, The longer the teeth finish meshing. The research work in this paper can provide a reference for enterprise to carry out the simulation analysis of gear and worm transmission products. The worm drive mechanism of plastic helical gear and steel which is designed according to the method of parameter selection in this paper has been applied to the automatic clutch control system of a certain vehicle in an enterprise. The mechanical strength and transmission performance can meet the requirements of application. The influence of helical gear worm drive design parameters on transmission efficiency and self-locking, dynamic contact finite element analysis flow, has been applied to the research and development of new products of worm drive in enterprise. The development of worm transmission series is of guiding significance.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U463.2;TQ320.79
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈燕良;王一助;;一種高性能合成蝸輪蝸桿油的研制及應(yīng)用[J];潤滑與密封;2013年05期
2 鄧松;華林;韓星會;黃松;;Finite element analysis of contact fatigue and bending fatigue of a theoretical assembling straight bevel gear pair[J];Journal of Central South University;2013年02期
3 趙葵;劉海岷;雷海勝;郁向紅;;基于ansys workbench的蝸桿斜齒輪靜力學(xué)仿真[J];武漢工業(yè)學(xué)院學(xué)報;2012年01期
4 杜凱;杜旭;周志鴻;;蝸桿斜齒輪傳動重合度的研究[J];汽車零部件;2011年08期
5 杜凱;杜旭;唐黎明;周志鴻;;蝸桿蝸輪傳動受力分析與效率計算[J];機(jī)械工程與自動化;2011年04期
6 李立新;江玉剛;曹誼勃;;基于精確齒面建模的ZA蝸桿蝸輪有限元接觸分析[J];工程設(shè)計學(xué)報;2011年01期
7 鄧國強(qiáng);徐飛;劉鐵;;低噪聲塑料斜齒輪和蝸桿傳動的試驗研究[J];機(jī)電工程技術(shù);2010年11期
8 凡增輝;趙熙雍;晏紅文;;基于ANSYS的斜齒輪接觸有限元分析[J];機(jī)械傳動;2010年04期
9 劉道春;;車用玻璃纖維增強(qiáng)塑料的應(yīng)用[J];汽車工程師;2010年03期
10 張生明;;論斜齒輪與蝸桿配合方法和工藝探析[J];中國醫(yī)療設(shè)備;2009年12期
相關(guān)碩士學(xué)位論文 前9條
1 欒義;塑料斜齒輪嚙合熱力耦合數(shù)值仿真[D];湘潭大學(xué);2012年
2 劉志鋒;AMT選換擋執(zhí)行機(jī)構(gòu)的接觸動力學(xué)及有限元分析[D];吉林大學(xué);2011年
3 曹誼勃;基于ANSYS的ZA蝸桿傳動有限元分析[D];浙江大學(xué);2009年
4 鄭亮;高精度塑料齒輪項目中的工藝參數(shù)優(yōu)化研究[D];上海交通大學(xué);2008年
5 李磊;塑料蝸輪與鋼制蝸桿的嚙合性能研究[D];同濟(jì)大學(xué);2007年
6 羅良清;漸開線蝸桿接觸應(yīng)力及傳動效率的研究[D];武漢理工大學(xué);2006年
7 張新;TI蝸桿副材料及含納米粒子潤滑油摩擦學(xué)性能研究[D];天津大學(xué);2005年
8 劉舸;圓柱蝸桿斜齒輪傳動的理論分析及試驗研究[D];重慶大學(xué);2004年
9 彭文捷;漸開線圓柱蝸桿斜齒輪傳動的3D仿真和有限元分析[D];重慶大學(xué);2004年
,本文編號:1937418
本文鏈接:http://sikaile.net/kejilunwen/qiche/1937418.html