側(cè)向風(fēng)及車(chē)間距對(duì)貨車(chē)列隊(duì)行駛影響分析
本文選題:車(chē)輛列隊(duì)行駛 + 數(shù)值仿真 ; 參考:《吉林大學(xué)》2016年碩士論文
【摘要】:隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,我國(guó)公路貨運(yùn)量、公路貨物周轉(zhuǎn)量在持續(xù)增長(zhǎng),載貨汽車(chē)的保有量也在不斷增加。相關(guān)統(tǒng)計(jì)數(shù)據(jù)顯示,2015年我國(guó)共完成公路貨運(yùn)量354.5億噸,完成公路貨物周轉(zhuǎn)量64705億噸公里,分別占全國(guó)貨運(yùn)量及貨物周轉(zhuǎn)量的78.7%和35.8%。2014年底我國(guó)公路營(yíng)運(yùn)載貨汽車(chē)數(shù)量已經(jīng)達(dá)到1453.36萬(wàn)輛,約占全國(guó)機(jī)動(dòng)車(chē)保有量的5.5%。如何提高載貨汽車(chē)的燃油經(jīng)濟(jì)性,減少有害物的排放已成為當(dāng)前研究的重要課題。汽車(chē)進(jìn)行列隊(duì)行駛,能夠有效降低隊(duì)列中各車(chē)的油耗,增加道路的通行能力。相關(guān)研究顯示,車(chē)輛在適當(dāng)間距內(nèi)進(jìn)行列隊(duì)行駛可以使車(chē)隊(duì)平均節(jié)油10%以上,具有較高的經(jīng)濟(jì)效益和良好的應(yīng)用前景。但目前國(guó)內(nèi)外對(duì)此的研究多是在不考慮側(cè)向風(fēng)的理想狀態(tài)下進(jìn)行的,這勢(shì)必會(huì)對(duì)研究結(jié)果的準(zhǔn)確性產(chǎn)生一定的影響。為此,本文就車(chē)輛進(jìn)行列隊(duì)行駛時(shí)同時(shí)受側(cè)向風(fēng)及不同車(chē)間距共同影響的情況開(kāi)展了相關(guān)研究。側(cè)向風(fēng)及車(chē)間距的變化會(huì)對(duì)隊(duì)列中各車(chē)氣動(dòng)阻力產(chǎn)生不同的影響,本文采用Solidworks軟件,參照沃爾沃某款集裝箱貨車(chē),按照1:1的比例建立了貨車(chē)仿真模型。為了仿真實(shí)驗(yàn)的順利進(jìn)行,這里對(duì)模型進(jìn)行了適當(dāng)?shù)暮?jiǎn)化,但保留了后視鏡、油箱等對(duì)空氣阻力影響較大的部件。選用基于格子波爾茲曼方法的新一代CFD技術(shù)—XFlow作為數(shù)值仿真軟件,該軟件具有無(wú)需網(wǎng)格、高效并行、邊界條件處理簡(jiǎn)單、模擬精確等特點(diǎn)。本文首先對(duì)單車(chē)模型僅受側(cè)向風(fēng)影響的情況進(jìn)行了數(shù)值仿真實(shí)驗(yàn),目的是為了研究單車(chē)風(fēng)阻系數(shù)受不同角度來(lái)流影響時(shí)的變化規(guī)律,同時(shí)為兩車(chē)和三車(chē)列隊(duì)行駛情況提供對(duì)比參照。仿真過(guò)程中的來(lái)流速度恒為25m/s,來(lái)流角度變化范圍為0°~45°。針對(duì)兩車(chē)和三車(chē)列隊(duì)行駛模型,本文對(duì)隊(duì)列同時(shí)受不同角度來(lái)流及車(chē)間距共同影響的情況進(jìn)行了仿真實(shí)驗(yàn),實(shí)驗(yàn)中來(lái)流速度與單車(chē)情況保持一致。兩車(chē)列隊(duì)行駛時(shí)的車(chē)間距變化范圍為0~30m,來(lái)流角度變化范圍為0°~20°。相對(duì)兩車(chē)隊(duì)列而言,由于三車(chē)隊(duì)列的間距變化方式更加復(fù)雜,所以為了探究中車(chē)位置的變化對(duì)車(chē)隊(duì)平均風(fēng)阻系數(shù)的影響,這里首先在無(wú)側(cè)向風(fēng)影響的條件下,就三車(chē)間距變化方式為非等間距變化的情況進(jìn)行了研究。在此基礎(chǔ)上,僅對(duì)等間距變化的三車(chē)隊(duì)列受不同角度來(lái)流影響的情況進(jìn)行了仿真分析,其間距變化范圍1~28m,來(lái)流角度變化范圍也為0°~20°。仿真實(shí)驗(yàn)完成后,根據(jù)仿真結(jié)果分別對(duì)兩車(chē)和三車(chē)隊(duì)列的燃油節(jié)省率進(jìn)行了計(jì)算。結(jié)果顯示,兩車(chē)隊(duì)列和三車(chē)隊(duì)列的平均節(jié)油率分別為8.93%和15.01%,節(jié)油效果較為明顯。根據(jù)仿真結(jié)果,從速度場(chǎng)和壓力場(chǎng)兩方面,對(duì)車(chē)輛氣動(dòng)阻力的形成機(jī)理、各車(chē)風(fēng)阻系數(shù)變化規(guī)律進(jìn)行了解釋分析,為相關(guān)研究奠定了一定的理論基礎(chǔ)。
[Abstract]:With the rapid development of China's economy, the volume of road freight and the volume of road cargo turnover are increasing continuously, and the quantity of cargo vehicles is also increasing. Relevant statistics show that in 2015, China completed 35.45 billion tons of road cargo and 6.4705 trillion tons of road cargo. It accounts for 78.7% of the national freight volume and freight turnover, respectively, and 35.8.3.8.The number of road cargo vehicles in China has reached 14.5336 million by the end of 2014, accounting for about 5.5% of the total number of motor vehicles in China. How to improve the fuel economy and reduce the emission of harmful substances has become an important research topic. The vehicle can reduce the fuel consumption and increase the capacity of the road. The related research shows that the vehicle can save more than 10% fuel on average when traveling in line within the proper distance, which has high economic benefit and good application prospect. However, most of the researches at home and abroad are carried out under the ideal condition of not considering the lateral wind, which will inevitably affect the accuracy of the research results. Therefore, this paper studies the influence of lateral wind and different vehicle spacing when vehicles are traveling in procession at the same time. The variation of the lateral wind and the distance between the vehicles will have different effects on the aerodynamic resistance of each vehicle in the queue. In this paper, the simulation model of the freight car is established according to the 1:1 scale by using Solidworks software and referring to a certain type of Volvo container truck. In order to make the simulation experiment go on smoothly, the model is simplified properly, but the rear-view mirror and fuel tank are retained, which have great influence on the air resistance. A new generation of CFD technology, -XFlow, based on lattice Boltzmann method, is chosen as the numerical simulation software. The software has the advantages of no grid, high efficiency and parallelism, simple boundary condition processing, accurate simulation and so on. In this paper, first of all, numerical simulation experiments are carried out to study the variation of the wind resistance coefficient when the wind resistance coefficient is affected by the flow at different angles. At the same time for two cars and three cars to provide a comparative reference to the situation. During the simulation, the velocity of flow is 25 m / s, and the angle range is 0 擄~ 45 擄. Based on the two-vehicle and three-car queue model, the simulation experiment is carried out on the condition that the queue is affected by the flow of different angles and the distance between the vehicles. The speed of the incoming flow is consistent with that of the bicycle in the experiment. The range of the distance between the two vehicles is 0 ~ 30 m, and the angle of flow is 0 擄~ 20 擄. Compared with the two-vehicle queue, because the distance between the three-vehicle queue is more complicated, so in order to explore the effect of the change of the position of the middle vehicle on the average wind resistance coefficient of the motorcade, first of all, under the condition of no lateral wind, In this paper, the change of the distance between three cars is studied. On this basis, the effect of different angle flow on the three-car queue with equal spacing is simulated and analyzed. The range of the interval is 1 ~ 28m, and the angle of the incoming flow is also 0 擄~ 20 擄. After the simulation experiment is completed, the fuel saving rates of two and three cars are calculated according to the simulation results. The results show that the average fuel saving rates of the two and three car queues are 8.93% and 15.01, respectively. According to the simulation results, the formation mechanism of vehicle aerodynamic resistance and the variation law of wind drag coefficient of each vehicle are explained and analyzed from two aspects of velocity field and pressure field, which lays a certain theoretical foundation for the relevant research.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:U461.1
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前2條
1 陳曉靜;劉曉佳;史薈燕;任鳳杰;;發(fā)射場(chǎng)臨近空間經(jīng)向風(fēng)分布的初步研究[A];創(chuàng)新驅(qū)動(dòng)發(fā)展 提高氣象災(zāi)害防御能力——S12航空與航天氣象技術(shù)研究與應(yīng)用[C];2013年
2 張銘;呂慶平;路凱程;;PDO流場(chǎng)模的解析求解Ⅰ——經(jīng)向風(fēng)強(qiáng)迫的情況[A];創(chuàng)新驅(qū)動(dòng)發(fā)展 提高氣象災(zāi)害防御能力——S6短期氣候預(yù)測(cè)理論、方法與技術(shù)[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 高威;無(wú)風(fēng)及側(cè)向風(fēng)作用下的腔室開(kāi)口火溢流研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前2條
1 許香港;側(cè)向風(fēng)及車(chē)間距對(duì)貨車(chē)列隊(duì)行駛影響分析[D];吉林大學(xué);2016年
2 鄧雪園;QBO的新指數(shù)以及經(jīng)向風(fēng)中QBO信號(hào)的研究[D];中國(guó)科學(xué)院研究生院(大氣物理研究所);2005年
,本文編號(hào):1910089
本文鏈接:http://sikaile.net/kejilunwen/qiche/1910089.html