天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于BME和NNE法的農(nóng)田土壤水分和養(yǎng)分空間插值

發(fā)布時間:2019-06-24 23:39
【摘要】:精準(zhǔn)農(nóng)業(yè)強調(diào)通過對農(nóng)田資源的分布式調(diào)控,盡可能均衡、合理地利用其生產(chǎn)潛力,獲取盡可能高的經(jīng)濟(jì)產(chǎn)量或顯著的社會效益。掌握農(nóng)田土壤水分和養(yǎng)分的空間分布規(guī)律是分布式調(diào)控的前提條件,而基于有限的采樣數(shù)據(jù)進(jìn)行空間插值則是掌握農(nóng)田土壤水分和養(yǎng)分變異規(guī)律的有效途徑,對于實現(xiàn)農(nóng)田的精確灌溉和變量施肥具有重要意義。本文以江蘇省揚州市北部某農(nóng)田上161個采樣點的含水量、全氮量、有機質(zhì)、堿解氮、速效鉀、速效磷含量為例,針對研究區(qū)土壤變量的空間變異特征,結(jié)合所采用的空間插值方法的特點,開展了如下研究:①利用研究區(qū)不同田塊之間土壤特性差異顯著、同一田塊無顯著差異的特點,用同一田塊內(nèi)土壤變量的分布特征表達(dá)待估點估值的不確定性(即構(gòu)造軟數(shù)據(jù)),并將此軟數(shù)據(jù)和實測硬數(shù)據(jù)結(jié)合,利用現(xiàn)代地質(zhì)統(tǒng)計學(xué)方法——貝葉斯最大熵法(BME)模擬土壤變量的空間分布(該方法以下簡稱MVBME法);②利用神經(jīng)網(wǎng)絡(luò)方法良好的非線性表達(dá)能力,借助集成神經(jīng)網(wǎng)絡(luò)系統(tǒng)估計待估點的不確定性(即構(gòu)造軟數(shù)據(jù)),并將其結(jié)果融入BME法中,用融入該軟數(shù)據(jù)的BME法(以下簡稱NNEBME法)模擬土壤變量的空間分布。③采取多種隨機抽樣方案(建模樣本和驗證樣本),將以上空間模擬結(jié)果分別與徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)法(RBF)、集成神經(jīng)網(wǎng)絡(luò)法(NNE)、普通克立格法(OK)、殘差克立格法(RK)的估值結(jié)果進(jìn)行比較。得出的主要研究結(jié)果如下:1)研究區(qū)內(nèi)土壤含水量呈弱變異性,養(yǎng)分均屬中等程度變異。且研究區(qū)內(nèi)整個試驗田的變異性比單塊要大很多,不同田塊之間土壤特性差異達(dá)到極顯著,同一田塊多屬無顯著性差異。2)特異值處理前,含水量、全氮量、有機質(zhì)、堿解氮都近似服從正態(tài)分布,速效鉀與速效磷不服從正態(tài)分布,處理特異值后土壤水分及養(yǎng)分的空間分布均近似服從正態(tài)分布。3)MVBME法對研究區(qū)內(nèi)土壤水分與養(yǎng)分進(jìn)行空間插值,并將結(jié)果與RBF法、RK法和OK法的插值結(jié)果進(jìn)行比較得出:MVBME法的平均誤差(ME)為四種插值方法中最小,估計方差(MSE)相較RBF法能降低23.77%-69.14%:相比較RE法,能降低0.41%-56.17%:與OK法相比,MVBME法能使有機質(zhì)、堿解氮、速效鉀、速效磷的MSE降低6.24%~52.37%,水分與全氮量在大部分情況下能降低10.25%-38.18%。四種插值方法里.MVBME法最接近于無偏估計,且對變量空間波動程度反映最精確。4)NNEBME法對研究區(qū)土壤含水量與養(yǎng)分進(jìn)行空間差值,其結(jié)果與NNE法、RK法和OK法進(jìn)行比較得出:對于不同的土壤變量,NNEBME法估值的ME最接近于零,近似無偏估計;與NNE法比較,MSE縮小1.64%~45.20%,與OK法、RK法比較,除土壤水分外,NNEBME法使MSE縮小0-40.05%:并且隨著已知點(即建模數(shù)據(jù)樣本容量)個數(shù)的減少,NNEBME法的插值優(yōu)勢更為突出;MSE的組成分析表明,NNEBME法對變量均值的估計與波動程度的描述更為精確。本文利用農(nóng)田土壤變量的空間變異特征和估值方法的特點,構(gòu)建了能為BME法有效利用的軟數(shù)據(jù),不僅拓展了現(xiàn)代地質(zhì)統(tǒng)計學(xué)的BME方法在農(nóng)業(yè)水土科學(xué)領(lǐng)域的應(yīng)用范圍,而且為農(nóng)田土壤水分和養(yǎng)分空間分布模擬精度的改善提供了新思路。
[Abstract]:The precision agriculture emphasizes the distribution and regulation of the farmland resources, as well as possible balance and reasonable utilization of the production potential of the farmland resources, so as to obtain the highest possible economic output or remarkable social benefit. The spatial distribution of soil moisture and nutrients in farmland is a prerequisite for distributed regulation, and spatial interpolation based on limited sampling data is an effective way to master the law of soil moisture and nutrient variation of the farmland. It is of great significance to realize the precise irrigation and variable fertilization of the farmland. In this paper, the water content, total nitrogen content, organic matter, alkaline solution nitrogen, quick-acting potassium and quick-acting phosphorus content of 161 sampling points on a farmland in the northern part of Yangzhou city of Jiangsu Province are taken as an example. in that invention, the soil characteristic difference between the different field blocks in the study area is obviously different, the characteristic of no significant difference of the same field block is used, the uncertainty of the estimation of the point to be evaluated (i. e., the soft data is construct) is expressed by the distribution characteristic of the soil variable in the same field block, and the soft data and the measured hard data are combined, The spatial distribution of the soil variable is simulated by the modern geostatistical method _ Bayesian Maximum Entropy Method (BME) (this method is referred to as the MVBME method), and the nonlinear expression ability of the soil variable is good by using the neural network method. The uncertainty of the point to be evaluated (i.e., the soft data) is estimated by the integrated neural network system, and the result is integrated into the BME method, and the spatial distribution of the soil variable is simulated by the BME method (hereinafter referred to as the NNEBME method) incorporated into the soft data. The results of the above-mentioned space simulation are compared with the estimation results of the radial basis function neural network method (RBF), the integrated neural network method (NNE), the ordinary Kriging (OK) and the residual Kriging (RK). The main results of the study are as follows:1) The soil water content in the study area is weak and the nutrient is of medium degree variation. and the variation ratio of the whole test field in the study area is much larger than that of the single block, the difference of the soil characteristics between the different field blocks is very significant, and there is no significant difference in the same field block.2) Before the specific value is treated, the water content, the total nitrogen amount, the organic matter and the alkaline solution nitrogen are all approximately subject to normal distribution, The spatial distribution of the soil water and nutrients in the study area was estimated by MVBME method, and the results were compared with the results of the RBF method, the RK method and the OK method. The mean error (ME) of the MVBME method is the least in the four interpolation methods, and the estimated variance (MSE) can be reduced by 23.77%-69.14% compared with the RBF method. Compared with the OK method, the MVBME method can reduce the MSE of the organic matter, the alkaline solution nitrogen, the quick-acting potassium and the quick-acting phosphorus by 6.24% to 52.37%, Water and total nitrogen can be reduced by 10.25% to 38.18% in most cases. In four interpolation methods. The MVBME method is closest to the unbiased estimation, and the spatial difference of soil water content and nutrients in the study area is reflected by the NNEBME method. The results are compared with the NNE method, the RK method and the OK method. Compared with the NNE method, the MSE is reduced by 1.64% to 45.20%, compared with the OK method and the RK method, the MSE is reduced by 0-40.05% in addition to the soil moisture, and the interpolation advantage of the NNEBME method is more prominent with the reduction of the number of known points (i.e., the sample capacity of the modeling data); the analysis of the composition of the MSE shows that, The NNNME method is more accurate to estimate the mean value of the variable and the degree of fluctuation. By using the characteristics of the spatial variation and the estimation method of the farmland soil variable, the soft data which can be effectively utilized by the BME method is constructed, and the application range of the BME method of the modern geostatistics in the field of agricultural water and soil science is not only expanded, But also provides a new thought for improving the soil moisture and the distribution of the nutrient spatial distribution of the farmland.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:S152.7;S158

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙秀蘭;利用土壤蓄水量研究區(qū)域農(nóng)田土壤水分時空分布狀況[J];新疆氣象;2001年03期

2 郁進(jìn)元;何巖;趙忠福;王棟;;農(nóng)田土壤水分各種測量方法的比較與分析[J];浙江水利科技;2007年06期

3 劉芳;劉世亮;介曉磊;曾一民;化黨領(lǐng);;豫中沙薄農(nóng)田土壤水分動態(tài)變化分析[J];中國農(nóng)學(xué)通報;2008年07期

4 朱建強;劉會寧;耿顯波;黃智敏;;易澇易漬農(nóng)田土壤水分變化及分析[J];長江大學(xué)學(xué)報(自然科學(xué)版)農(nóng)學(xué)卷;2008年03期

5 宗吉;落桑旺姆;;山南地區(qū)澤當(dāng)站農(nóng)田土壤水分變化特征分析[J];西藏農(nóng)業(yè)科技;2009年01期

6 王仰仁;孫書洪;葉瀾濤;韓娜娜;;農(nóng)田土壤水分二區(qū)模型的研究[J];水利學(xué)報;2009年08期

7 馬英;;農(nóng)田土壤水分的研究[J];華北水利水電學(xué)院學(xué)報;2009年05期

8 張增林;郁曉慶;;基于無線傳感器網(wǎng)絡(luò)的農(nóng)田土壤水分監(jiān)測系統(tǒng)(英文)[J];Agricultural Science & Technology;2012年01期

9 王改蘭;段建南;李栓懷;張進(jìn)峰;;磚窯溝流域旱地農(nóng)田土壤水分平衡研究初報[J];中國科學(xué)院水利部西北水土保持研究所集刊(黃土高原區(qū)域治理技術(shù)體系與效益評價專集);1989年01期

10 韓仕峰,李玉山,張孝中,史竹葉;提高黃土高原農(nóng)田土壤水分利用的主要途徑[J];水土保持通報;1990年06期

相關(guān)會議論文 前2條

1 王仰仁;孫書洪;王文龍;孫新忠;;農(nóng)田土壤水分動態(tài)模擬研究[A];變化環(huán)境下的水資源響應(yīng)與可持續(xù)利用——中國水利學(xué)會水資源專業(yè)委員會2009學(xué)術(shù)年會論文集[C];2009年

2 毛飛;劉曉宏;胡秋卷;張佳華;劉秀江;趙曉飛;;中子儀測定氣候觀測場和農(nóng)田土壤水分的試驗研究[A];新世紀(jì)氣象科技創(chuàng)新與大氣科學(xué)發(fā)展——中國氣象學(xué)會2003年年會“農(nóng)業(yè)氣象與生態(tài)環(huán)境”分會論文集[C];2003年

相關(guān)重要報紙文章 前1條

1 中化化肥高級顧問 中國農(nóng)業(yè)大學(xué)教授 曹一平;秋分:又到整地施肥時[N];農(nóng)資導(dǎo)報;2013年

相關(guān)碩士學(xué)位論文 前10條

1 鄧天宏;河南省農(nóng)田土壤水分變化規(guī)律及動態(tài)預(yù)報研究[D];南京信息工程大學(xué);2005年

2 高鳳蓮;農(nóng)田土壤水分時空變異特征及水量平衡分析[D];中國農(nóng)業(yè)大學(xué);2004年

3 張聰聰;氣候變化對太湖地區(qū)典型農(nóng)田土壤水分影響的研究[D];南京農(nóng)業(yè)大學(xué);2014年

4 王磊;石羊河流域農(nóng)田土壤水分有效性評價及動態(tài)模擬[D];西北農(nóng)林科技大學(xué);2014年

5 魏國栓;農(nóng)田土壤水分遙感反演及其時空變異特征分析[D];南京信息工程大學(xué);2008年

6 李艷芳;西安地區(qū)蘋果林地與農(nóng)田土壤水分變化研究[D];陜西師范大學(xué);2009年

7 李天霄;北方季節(jié)性凍土區(qū)農(nóng)田土壤水分運動規(guī)律研究[D];東北農(nóng)業(yè)大學(xué);2010年

8 高瞻;基于光譜分析的農(nóng)田土壤水分與養(yǎng)分測定方法研究[D];西北農(nóng)林科技大學(xué);2013年

9 張頎;灌區(qū)農(nóng)田土壤水分運移模型研究與預(yù)測[D];新疆農(nóng)業(yè)大學(xué);2005年

10 夏冰;基于BME和NNE法的農(nóng)田土壤水分和養(yǎng)分空間插值[D];揚州大學(xué);2015年

,

本文編號:2505459

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/2505459.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1620d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
99国产一区在线播放| 亚洲欧洲日韩综合二区| 91在线爽的少妇嗷嗷叫| 中文字幕无线码一区欧美| 高清国产日韩欧美熟女| 亚洲av日韩av高潮无打码| 嫩呦国产一区二区三区av| 日韩性生活视频免费在线观看| 99久久国产综合精品二区| 国产免费无遮挡精品视频| 国产一区二区三区av在线| 国产av一区二区三区久久不卡| 国产黄色高清内射熟女视频| 中文字幕一二区在线观看| 日本特黄特色大片免费观看| 日本不卡一区视频欧美| 国产精品99一区二区三区| 精品人妻精品一区二区三区| 国产丝袜极品黑色高跟鞋| 国产精品蜜桃久久一区二区| 风间中文字幕亚洲一区| 久久精品一区二区少妇| 99日韩在线视频精品免费| 亚洲少妇人妻一区二区| 黄色国产一区二区三区| 欧美日本道一区二区三区| 不卡中文字幕在线免费看| 一个人的久久精彩视频| 日韩欧美黄色一级视频| 九九热最新视频免费观看| 国产一区国产二区在线视频| 东京干男人都知道的天堂| 欧美亚洲另类久久久精品 | 免费观看日韩一级黄色大片 | 我想看亚洲一级黄色录像| 国产一区二区不卡在线视频| 亚洲一区二区三区有码| 午夜精品一区免费视频| 欧美区一区二区在线观看| 国产欧美日韩综合精品二区| 欧美成人精品国产成人综合|