基于BME和NNE法的農(nóng)田土壤水分和養(yǎng)分空間插值
[Abstract]:The precision agriculture emphasizes the distribution and regulation of the farmland resources, as well as possible balance and reasonable utilization of the production potential of the farmland resources, so as to obtain the highest possible economic output or remarkable social benefit. The spatial distribution of soil moisture and nutrients in farmland is a prerequisite for distributed regulation, and spatial interpolation based on limited sampling data is an effective way to master the law of soil moisture and nutrient variation of the farmland. It is of great significance to realize the precise irrigation and variable fertilization of the farmland. In this paper, the water content, total nitrogen content, organic matter, alkaline solution nitrogen, quick-acting potassium and quick-acting phosphorus content of 161 sampling points on a farmland in the northern part of Yangzhou city of Jiangsu Province are taken as an example. in that invention, the soil characteristic difference between the different field blocks in the study area is obviously different, the characteristic of no significant difference of the same field block is used, the uncertainty of the estimation of the point to be evaluated (i. e., the soft data is construct) is expressed by the distribution characteristic of the soil variable in the same field block, and the soft data and the measured hard data are combined, The spatial distribution of the soil variable is simulated by the modern geostatistical method _ Bayesian Maximum Entropy Method (BME) (this method is referred to as the MVBME method), and the nonlinear expression ability of the soil variable is good by using the neural network method. The uncertainty of the point to be evaluated (i.e., the soft data) is estimated by the integrated neural network system, and the result is integrated into the BME method, and the spatial distribution of the soil variable is simulated by the BME method (hereinafter referred to as the NNEBME method) incorporated into the soft data. The results of the above-mentioned space simulation are compared with the estimation results of the radial basis function neural network method (RBF), the integrated neural network method (NNE), the ordinary Kriging (OK) and the residual Kriging (RK). The main results of the study are as follows:1) The soil water content in the study area is weak and the nutrient is of medium degree variation. and the variation ratio of the whole test field in the study area is much larger than that of the single block, the difference of the soil characteristics between the different field blocks is very significant, and there is no significant difference in the same field block.2) Before the specific value is treated, the water content, the total nitrogen amount, the organic matter and the alkaline solution nitrogen are all approximately subject to normal distribution, The spatial distribution of the soil water and nutrients in the study area was estimated by MVBME method, and the results were compared with the results of the RBF method, the RK method and the OK method. The mean error (ME) of the MVBME method is the least in the four interpolation methods, and the estimated variance (MSE) can be reduced by 23.77%-69.14% compared with the RBF method. Compared with the OK method, the MVBME method can reduce the MSE of the organic matter, the alkaline solution nitrogen, the quick-acting potassium and the quick-acting phosphorus by 6.24% to 52.37%, Water and total nitrogen can be reduced by 10.25% to 38.18% in most cases. In four interpolation methods. The MVBME method is closest to the unbiased estimation, and the spatial difference of soil water content and nutrients in the study area is reflected by the NNEBME method. The results are compared with the NNE method, the RK method and the OK method. Compared with the NNE method, the MSE is reduced by 1.64% to 45.20%, compared with the OK method and the RK method, the MSE is reduced by 0-40.05% in addition to the soil moisture, and the interpolation advantage of the NNEBME method is more prominent with the reduction of the number of known points (i.e., the sample capacity of the modeling data); the analysis of the composition of the MSE shows that, The NNNME method is more accurate to estimate the mean value of the variable and the degree of fluctuation. By using the characteristics of the spatial variation and the estimation method of the farmland soil variable, the soft data which can be effectively utilized by the BME method is constructed, and the application range of the BME method of the modern geostatistics in the field of agricultural water and soil science is not only expanded, But also provides a new thought for improving the soil moisture and the distribution of the nutrient spatial distribution of the farmland.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:S152.7;S158
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙秀蘭;利用土壤蓄水量研究區(qū)域農(nóng)田土壤水分時空分布狀況[J];新疆氣象;2001年03期
2 郁進(jìn)元;何巖;趙忠福;王棟;;農(nóng)田土壤水分各種測量方法的比較與分析[J];浙江水利科技;2007年06期
3 劉芳;劉世亮;介曉磊;曾一民;化黨領(lǐng);;豫中沙薄農(nóng)田土壤水分動態(tài)變化分析[J];中國農(nóng)學(xué)通報;2008年07期
4 朱建強;劉會寧;耿顯波;黃智敏;;易澇易漬農(nóng)田土壤水分變化及分析[J];長江大學(xué)學(xué)報(自然科學(xué)版)農(nóng)學(xué)卷;2008年03期
5 宗吉;落桑旺姆;;山南地區(qū)澤當(dāng)站農(nóng)田土壤水分變化特征分析[J];西藏農(nóng)業(yè)科技;2009年01期
6 王仰仁;孫書洪;葉瀾濤;韓娜娜;;農(nóng)田土壤水分二區(qū)模型的研究[J];水利學(xué)報;2009年08期
7 馬英;;農(nóng)田土壤水分的研究[J];華北水利水電學(xué)院學(xué)報;2009年05期
8 張增林;郁曉慶;;基于無線傳感器網(wǎng)絡(luò)的農(nóng)田土壤水分監(jiān)測系統(tǒng)(英文)[J];Agricultural Science & Technology;2012年01期
9 王改蘭;段建南;李栓懷;張進(jìn)峰;;磚窯溝流域旱地農(nóng)田土壤水分平衡研究初報[J];中國科學(xué)院水利部西北水土保持研究所集刊(黃土高原區(qū)域治理技術(shù)體系與效益評價專集);1989年01期
10 韓仕峰,李玉山,張孝中,史竹葉;提高黃土高原農(nóng)田土壤水分利用的主要途徑[J];水土保持通報;1990年06期
相關(guān)會議論文 前2條
1 王仰仁;孫書洪;王文龍;孫新忠;;農(nóng)田土壤水分動態(tài)模擬研究[A];變化環(huán)境下的水資源響應(yīng)與可持續(xù)利用——中國水利學(xué)會水資源專業(yè)委員會2009學(xué)術(shù)年會論文集[C];2009年
2 毛飛;劉曉宏;胡秋卷;張佳華;劉秀江;趙曉飛;;中子儀測定氣候觀測場和農(nóng)田土壤水分的試驗研究[A];新世紀(jì)氣象科技創(chuàng)新與大氣科學(xué)發(fā)展——中國氣象學(xué)會2003年年會“農(nóng)業(yè)氣象與生態(tài)環(huán)境”分會論文集[C];2003年
相關(guān)重要報紙文章 前1條
1 中化化肥高級顧問 中國農(nóng)業(yè)大學(xué)教授 曹一平;秋分:又到整地施肥時[N];農(nóng)資導(dǎo)報;2013年
相關(guān)碩士學(xué)位論文 前10條
1 鄧天宏;河南省農(nóng)田土壤水分變化規(guī)律及動態(tài)預(yù)報研究[D];南京信息工程大學(xué);2005年
2 高鳳蓮;農(nóng)田土壤水分時空變異特征及水量平衡分析[D];中國農(nóng)業(yè)大學(xué);2004年
3 張聰聰;氣候變化對太湖地區(qū)典型農(nóng)田土壤水分影響的研究[D];南京農(nóng)業(yè)大學(xué);2014年
4 王磊;石羊河流域農(nóng)田土壤水分有效性評價及動態(tài)模擬[D];西北農(nóng)林科技大學(xué);2014年
5 魏國栓;農(nóng)田土壤水分遙感反演及其時空變異特征分析[D];南京信息工程大學(xué);2008年
6 李艷芳;西安地區(qū)蘋果林地與農(nóng)田土壤水分變化研究[D];陜西師范大學(xué);2009年
7 李天霄;北方季節(jié)性凍土區(qū)農(nóng)田土壤水分運動規(guī)律研究[D];東北農(nóng)業(yè)大學(xué);2010年
8 高瞻;基于光譜分析的農(nóng)田土壤水分與養(yǎng)分測定方法研究[D];西北農(nóng)林科技大學(xué);2013年
9 張頎;灌區(qū)農(nóng)田土壤水分運移模型研究與預(yù)測[D];新疆農(nóng)業(yè)大學(xué);2005年
10 夏冰;基于BME和NNE法的農(nóng)田土壤水分和養(yǎng)分空間插值[D];揚州大學(xué);2015年
,本文編號:2505459
本文鏈接:http://sikaile.net/kejilunwen/nykj/2505459.html