古水稻土有機(jī)質(zhì)演變規(guī)律及其腐殖質(zhì)組成特征
[Abstract]:Soil organic matter is an important part of the global carbon cycle. After a long period of closure, the composition of soil organic matter and its humus evolves in a complex or simple direction. What is the change process and mechanism of the soil organic matter? It is not clear yet. Therefore, the evolution of soil organic matter and the characteristics of humus composition in ancient paddy soil were studied by using the section of Shanlonggang Paddy soil site in Liyang Plain as the research object. The composition and distribution characteristics of organic matter in ancient paddy soil with different particle size aggregates were analyzed. The infrared spectrum characteristics of ancient paddy soil were discussed in order to provide the basis for soil carbon release and fixation and biogeochemical cycle of carbon. The main results are as follows: (1) the content of organic matter varied from 8.41 to 24.00 g 路kg ~ (- 1) in the section of Shanlonggang Rice site, and 9.5g / 12.3g / kg ~ (- 1) g 路kg ~ (- 1) ~ (- 1) in the ancient rice soil layer. According to the spatial distribution of the profile, the change trend of the organic matter in the paleo-paddy soil is the parent material layer of the plough bottom and the retention layer. Compared with modern cultivated paddy soil, the content of organic matter is lower and the range of variation is smaller. (2) the content of organic matter in different grain diameter aggregates of ancient paddy soil is (5-2mm) (2-lmm) (1-0.25mm) (0.25mm). According to the spatial distribution of the profile, the organic matter of the aggregates of different grain diameters in the paleo-paddy soil is as follows: plough bottom of PA section, plough layer of PB profile, ploughing layer of PC profile and plough parent layer of plough layer of PC profile. Compared with the modern cultivated paddy soil, the organic matter content of the paddy soil is higher than that of the plough bottom of the modern cultivated paddy soil. (3) the average content of humus in ancient paddy soil was 3.66g/kg humic acid (1.92g/kg) fulvic acid (0.95g/kg). According to the spatial distribution of the profile, the variation range of humus content in all forms of Paddy soil is relatively small and tends to be stable gradually. Among them, the content of humic acid increased gradually with the increase of soil depth, the content of fulvic acid in profile PA,PB decreased and the content of PC increased. The content of humin in profile PA decreased at first and then increased. The PB in section showed a trend of "decrease-rise-decline", while the profile PC showed a trend of obvious decrease. The Hu-Fu ratio of ancient paddy soil increased with the increase of soil depth. Compared with modern cultivated paddy soil, Hu Fu is lower. (4) the average content of combined humus in ancient paddy soil is as follows: loose-bound (12.75g/kg) tight-bound (4.07g/kg)-stable-bound (0.42g/kg); The largest relative content is loose junctions (58.36%), followed by compact junctions (52.52%). The third is stable binding state (9.82%). From the view of spatial distribution of profile, the content of humus in each combined state of ancient paddy soil changed greatly, among which, the content of PA,PB loose jointed state in the profile showed a decreasing trend, and the content of stable bound state showed an upward trend. The compact state decreased. (5) the functional groups of ancient paddy soil were mainly concentrated in halogen compounds and inorganic compounds. The organic matter has a great influence on the functional groups of ancient paddy soil, in which the wave number in the ancient paddy soil is 188.2 cm ~ (1), and the absorption peak weakens after the removal of organic matter. In the ancient paddy soil, the wave number was 1631 ~ 470 cm-1, the benzene ring was formed gradually, the olefin compound increased and the degree of aromatization increased, and the binding power between halogen and inorganic compound increased. According to the reciprocal of the first order, the difference between the ancient paddy soil and the modern cultivated paddy soil is not significant, but after the removal of organic matter, the value of FD is different: after the removal of the organic matter, the peak values of the former and the latter have a downward trend.
【學(xué)位授予單位】:湖南農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S153.62
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇允蘭,莫漢宏,楊克武,安鳳春;土壤中結(jié)合態(tài)農(nóng)藥環(huán)境毒理研究進(jìn)展[J];環(huán)境科學(xué)進(jìn)展;1999年03期
2 謝顯傳,王冬生;結(jié)合態(tài)農(nóng)藥殘留及其環(huán)境毒理研究進(jìn)展(綜述)[J];上海農(nóng)業(yè)學(xué)報(bào);2005年01期
3 蔣廷惠,胡靄堂;土壤鋅的形態(tài)和分級(jí)方法[J];土壤通報(bào);1989年02期
4 李俊國,孫紅文;超臨界流體萃取在研究土壤和沉積物結(jié)合態(tài)殘留中的應(yīng)用[J];生態(tài)環(huán)境;2004年02期
5 王旭東,胡田田,張一平;不同結(jié)合態(tài)胡敏酸的性質(zhì)、結(jié)構(gòu)研究[J];西北農(nóng)業(yè)學(xué)報(bào);1998年01期
6 侯少范,李德珠,王麗珍,王五一,譚見安;我國土壤中結(jié)合態(tài)硒的含量和分布規(guī)律[J];地理研究;1990年04期
7 項(xiàng)海光,翁煥新,孔祥樂;紅壤中各種結(jié)合態(tài)磷分布狀況及其對酸的敏感性研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2003年02期
8 林玉鎖,薛家驊;外加鋅在土壤中形態(tài)的研究[J];農(nóng)村生態(tài)環(huán)境;1993年01期
9 孫志明;張永熙;王壽祥;陳傳群;;農(nóng)業(yè)生物學(xué)研究中氚水液閃測樣的制備[J];核農(nóng)學(xué)通報(bào);1993年03期
10 蔣廷惠,胡靄堂,秦懷英;土壤中鋅的形態(tài)分布及其影響因素[J];土壤學(xué)報(bào);1993年03期
相關(guān)會(huì)議論文 前7條
1 梁亮;馮素萍;鞠莉;;有機(jī)物結(jié)合態(tài)與硫化物結(jié)合態(tài)分級(jí)提取方法的研究[A];中國化學(xué)會(huì)第七屆水處理化學(xué)大會(huì)暨學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2004年
2 秦海波;梁良;朱建明;;鄂西南二疊紀(jì)黑色巖系中鉬的結(jié)合態(tài)[A];第七屆全國環(huán)境化學(xué)大會(huì)摘要集-S12 重金屬污染與修復(fù)[C];2013年
3 秦海波;朱建明;李璐;雷磊;蘇宏?duì)N;;鄂西南恩施高硒土壤中硒的結(jié)合態(tài)與自然硒[A];中國礦物巖石地球化學(xué)學(xué)會(huì)第11屆學(xué)術(shù)年會(huì)論文集[C];2007年
4 劉卿;高頤雄;苗虹;趙云峰;吳永寧;;食品中結(jié)合態(tài)和游離態(tài)氯丙醇含量的檢測[A];第六屆全國環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
5 王意澤;高彥征;;根際土壤中PAHs結(jié)合態(tài)殘留的時(shí)空分布[A];農(nóng)業(yè)環(huán)境與生態(tài)安全——第五屆全國農(nóng)業(yè)環(huán)境科學(xué)學(xué)術(shù)研討會(huì)論文集[C];2013年
6 莫漢宏;蘇允蘭;安鳳春;;苯氧羧酸等除草劑在土壤中的結(jié)合殘留[A];Risk Assessment of Toxic Chemicals--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
7 黃鶴翔;田青青;董文;武俊紅;;土壤中钚的深度分布和結(jié)合態(tài)研究[A];全國放射性流出物和環(huán)境監(jiān)測與評(píng)價(jià)研討會(huì)論文匯編[C];2003年
相關(guān)博士學(xué)位論文 前8條
1 杜紅陽;干旱脅迫下小麥發(fā)育籽粒胚細(xì)胞內(nèi)結(jié)合態(tài)多胺的功能[D];河南農(nóng)業(yè)大學(xué);2015年
2 孫曉華;肉類熱加工過程中晚期糖基化終末產(chǎn)物的形成及其內(nèi)外源影響因素[D];上海海洋大學(xué);2016年
3 童非;土壤組分和環(huán)境因素對四溴雙酚A在土壤中非生物環(huán)境過程的影響及機(jī)制[D];南京大學(xué);2016年
4 殷憲強(qiáng);膠體對鉛運(yùn)移的影響及鉛的生物效應(yīng)[D];西北農(nóng)林科技大學(xué);2010年
5 李之鵬;膜生物反應(yīng)器—蠕蟲床耦合系統(tǒng)中EPS的膜污染行為研究[D];哈爾濱工業(yè)大學(xué);2013年
6 張洪;基于化學(xué)誘導(dǎo)的油菜(Brassica napus L.)修復(fù)鎘污染土壤的根際過程[D];西南大學(xué);2008年
7 于穎;銅—農(nóng)藥污染的土壤生態(tài)化學(xué)脫毒行為研究[D];中國科學(xué)院研究生院(沈陽應(yīng)用生態(tài)研究所);2004年
8 曾路生;土壤—水稻/蔬菜作物系統(tǒng)中鎘、鉛的生態(tài)效應(yīng)研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 曹敏;超聲波輔助H_3PO_4、KOH、KH_2PO_4萃取土壤中的砷[D];中南林業(yè)科技大學(xué);2015年
2 王意澤;根際土壤中PAHs結(jié)合態(tài)殘留的時(shí)空分布及植物可利用性[D];南京農(nóng)業(yè)大學(xué);2014年
3 羅倩;名山河流域不同土地利用方式土壤硒的形態(tài)及其有效性研究[D];四川農(nóng)業(yè)大學(xué);2014年
4 柯思敏;荔枝結(jié)合態(tài)過氧化物酶分離純化及其性質(zhì)的初步研究[D];福建農(nóng)林大學(xué);2015年
5 韓月;設(shè)施條件下不同施肥對土壤中鎘的生物效性的影響[D];沈陽農(nóng)業(yè)大學(xué);2016年
6 郭子川;古水稻土有機(jī)質(zhì)演變規(guī)律及其腐殖質(zhì)組成特征[D];湖南農(nóng)業(yè)大學(xué);2015年
7 朱夢旭;白酒中易揮發(fā)的有毒有害小分子醛及其結(jié)合態(tài)化合物研究[D];江南大學(xué);2016年
8 楊帆;結(jié)合態(tài)微囊藻毒素的毒理學(xué)研究[D];武漢理工大學(xué);2007年
9 原田;不同地區(qū)石榴皮游離態(tài)和結(jié)合態(tài)多酚成分分析與功能評(píng)價(jià)[D];西北農(nóng)林科技大學(xué);2014年
10 楊娜娜;貴州省某村煤與土壤砷含量、形態(tài)及其排放的初步研究[D];河南理工大學(xué);2010年
,本文編號(hào):2457436
本文鏈接:http://sikaile.net/kejilunwen/nykj/2457436.html