基于開花期衛(wèi)星遙感數(shù)據(jù)的大田小麥估產(chǎn)方法比較
[Abstract]:[objective] Satellite remote sensing has the advantages of wide coverage, fast acquisition speed, large amount of information, strong dynamic and so on. It can obtain crop yield information accurately and timely, and reflect the spatial variation trend of crop yield. Crop yield estimation by remote sensing has become a hotspot in modern agricultural production. By improving the modeling method of crop yield estimation by remote sensing, the precision of crop yield estimation can be further improved, which can provide a visual view for the macroscopic understanding of crop yield formation and change trend in different regions. [methods] based on the fixed-point observation experiments in five counties of Dafeng, Xinghua, Jiangyan, Taixing and Yizheng in Jiangsu Province from 2011-2012, the HJ-1A/1B images of domestic satellite products were used as remote sensing data. The quantitative analysis of satellite remote sensing vegetation index, key growth index and harvest yield was carried out in the field location observation area during the flowering period of wheat (Triticum aestivum L.). Through quantitative analysis of yield, wheat growth index and vegetation index, the mechanism and repeatability of remote sensing inversion are further enhanced. The correlation analysis between satellite remote sensing variables and wheat yield was taken as the direct modeling method for estimating yield by remote sensing, while indirect modeling method was used to select remote sensing variables with good correlation with yield and main seedling condition indexes with good correlation with remote sensing variables. Based on the sensitive remote sensing variables obtained by screening, the corresponding wheat growth index was first monitored, and the quantitative relationship between the wheat growth index and the yield was combined, and then an indirect yield estimation model was established, which was used to estimate the yield indirectly by remote sensing. By using direct and indirect modeling methods, sensitive satellite remote sensing variables for estimating yield are screened based on the principle of maximum correlation. Based on the experimental data in 2012, the correlation between seedling growth index, yield and satellite remote sensing variables in flowering stage of wheat was analyzed by linear regression analysis. The field wheat yield estimation models based on remote sensing vegetation index were constructed, and the model was analyzed together with the measured results on the ground. Taking the experimental data of 2011 as the validation sample, the estimation accuracy of the two models is verified and compared with the evaluation index fitting (R2) and root mean square error (RMSE),). [results] based on the difference vegetation index (difference vegetation index,DVI) and the ratio vegetation index (ratio vegetation index,RVI), the root mean square error (root mean square error,) of the single factor direct yield estimation model was obtained. RMSE) for 918 kg hm-2 and 1 399.5 kg hm-2, using DVI and RVI remote sensing variables to construct a bivariate yield estimation model with a RMSE of 1 036.5 kg hm-2, to normalize the vegetation index (normalized difference vegetation index, The RMSE of the indirect yield estimation model based on NDVI) and leaf nitrogen accumulation was 805.5 kg hm-2, which indicated that the HJ-1A/1B image at flowering stage was feasible and accurate in estimating wheat regional yield. By comparison, the precision of indirect yield estimation model based on NDVI and leaf nitrogen accumulation was significantly higher than that of direct yield estimation model. Compared with DVI direct yield estimation model, RMSE decreased by 112.5 kg hm-2,. Compared with RVI direct yield estimation model, RMSE decreased by 594 kg hm-2, compared with two-factor model RMSE by 231 kg hm-2. [conclusion] domestic satellite HJ-1A/B can better meet the requirement of wheat yield estimation. The indirect method is better than the direct method in establishing crop yield estimation model by remote sensing. The results provide a new way to estimate wheat yield more accurately by remote sensing.
【作者單位】: 揚(yáng)州大學(xué)江蘇省作物遺傳生理國家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn)/糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心;
【基金】:國家自然科學(xué)基金(41271415) 江蘇高校優(yōu)勢學(xué)科建設(shè)工程(PAPD) 江蘇省農(nóng)業(yè)自主創(chuàng)新資金(CX(16)1042) 蘇州市農(nóng)業(yè)科技創(chuàng)新項(xiàng)目(SNG201643) 揚(yáng)州市科技計(jì)劃(YZ2016242) 揚(yáng)州大學(xué)科技創(chuàng)新團(tuán)隊(duì)
【分類號】:S127;S512.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武晉雯;紀(jì)瑞鵬;張玉書;楊素英;;遼寧省耕地植被指數(shù)變化特征分析[J];氣象科學(xué);2006年03期
2 陳乾;用植被指數(shù)監(jiān)測干旱并估計(jì)冬麥產(chǎn)量[J];遙感技術(shù)與應(yīng)用;1994年03期
3 孫華生;徐愛功;林卉;張連蓬;;基于不同算法的時(shí)間序列植被指數(shù)去噪效果分析[J];江蘇農(nóng)業(yè)科學(xué);2012年05期
4 李春強(qiáng);李紅軍;;TVDI在冬小麥春季干旱監(jiān)測中的應(yīng)用[J];遙感技術(shù)與應(yīng)用;2008年02期
5 廖欽洪;張東彥;王紀(jì)華;楊貴軍;楊浩;Coburn Craig;Wong Zhijie;王大成;;基于多角度成像數(shù)據(jù)的新型植被指數(shù)構(gòu)建與葉綠素含量估算[J];光譜學(xué)與光譜分析;2014年06期
6 衛(wèi)煒;吳文斌;李正國;楊鵬;胡瓊;周清波;;時(shí)間序列植被指數(shù)重構(gòu)方法比對研究[J];中國農(nóng)業(yè)資源與區(qū)劃;2014年01期
7 王鵬新,龔健雅,李小文,王錦地;基于植被指數(shù)和土地表面溫度的干旱監(jiān)測模型[J];地球科學(xué)進(jìn)展;2003年04期
8 邱慶倫,趙鴻燕,郭劍,宋福,吳玉珍;遙感植被指數(shù)在農(nóng)業(yè)生態(tài)環(huán)境監(jiān)測中的應(yīng)用[J];農(nóng)機(jī)化研究;2004年06期
9 高閃閃;陳仁喜;;適于ALOS圖像植被信息提取的新植被指數(shù)[J];國土資源遙感;2013年04期
10 朱凌紅;周澎;王忠民;邵志剛;;高光譜數(shù)據(jù)與葉綠素含量及植被指數(shù)的相關(guān)性研究進(jìn)展[J];內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
相關(guān)會議論文 前3條
1 付卓;王錦地;施建成;宋金玲;靳華安;張立新;張鐘軍;趙少杰;陳柏松;;微波植被指數(shù)與光學(xué)植被指數(shù)在地面尺度上的關(guān)系研究[A];遙感定量反演算法研討會摘要集[C];2010年
2 肖乾廣;肖嵐;李亞君;;EOS/MODIS,FY-1D/MVISR,NOAA/AVHRR的歸一化植被指數(shù)的同化研究[A];全國國土資源與環(huán)境遙感應(yīng)用技術(shù)研討會論文集[C];2009年
3 李進(jìn)文;鐘儒祥;趙文化;;基于MODIS植被指數(shù)的廣東省農(nóng)業(yè)生態(tài)分析[A];中國氣象學(xué)會2006年年會“衛(wèi)星遙感技術(shù)進(jìn)展及應(yīng)用”分會場論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 衛(wèi)煒;MODIS雙星數(shù)據(jù)協(xié)同的耕地物候參數(shù)提取方法研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉吉凱;基于HJ衛(wèi)星數(shù)據(jù)的甘蔗長勢監(jiān)測與估產(chǎn)研究[D];南京信息工程大學(xué);2015年
2 胡文;黑龍江省雹災(zāi)遙感監(jiān)測及時(shí)空特征分析[D];東北農(nóng)業(yè)大學(xué);2015年
3 吳明業(yè);基于TVDI的土壤干旱遙感監(jiān)測研究及驗(yàn)證[D];安徽農(nóng)業(yè)大學(xué);2014年
4 王亞楠;基于渦度相關(guān)的農(nóng)田碳通量及固碳能力遙感監(jiān)測[D];河南理工大學(xué);2015年
5 王淵博;基于遙感信息的農(nóng)作物生物質(zhì)可獲取量評估及空間分布研究[D];西南交通大學(xué);2016年
6 李明君;基于冬小麥前期光譜信息的播期遙感監(jiān)測研究[D];西安科技大學(xué);2015年
7 張菁;不同磷利用效率基因型水稻的高光譜反射表型量化的初步研究[D];浙江大學(xué);2016年
8 楊昕;不同遙感植被指數(shù)組合模式監(jiān)測小麥主要苗情參數(shù)研究[D];揚(yáng)州大學(xué);2015年
9 謝小燕;基于多源遙感的枯枝落葉層蓋度反演研究[D];西北大學(xué);2016年
10 羅駿飛;CGMD302作物生長監(jiān)測診斷儀的測試與評價(jià)[D];南京農(nóng)業(yè)大學(xué);2015年
,本文編號:2335841
本文鏈接:http://sikaile.net/kejilunwen/nykj/2335841.html