基于多重分形特征的作物葉片圖像分割技術(shù)的研究
[Abstract]:Leaf is an important organ and the main tissue of nutrient uptake. Its morphology and surface texture can characterize the growth of crops and the situation of pests and diseases. At the same time, the morphological change of leaf is less than that of root and stem, so its texture feature is the ideal object to explore the crop growth condition, but there are few effective tools to describe the texture feature at present, which is a difficult problem to be solved. Multifractal theory in fractal is an important method to describe texture features of images. It has been well applied in the field of parallel image processing. In this paper, according to the singularity of leaf image, multifractal theory is used to describe the multifractal feature of leaf grayscale image, and the problem of crop image segmentation is studied by using these features. The purpose of this paper is to provide the theoretical basis for the nondestructive diagnosis system of crop leaf deficiency and disease through machine intelligence. 1. The method of extracting the leaf texture feature of rape based on the multifractal of local capacity measure is realized, and the image segmentation technology is further realized. The experimental results show that the method is very sensitive to the edge, vein and disease area of the leaf, and it can segment the diseased area well. For different disease images of leaves, the effect of multifractal spectrum segmentation based on different capacity measure is different, but generally speaking, The multifractal spectrum segmentation method based on capacity measure can accurately detect the key areas of disease. 2. On the basis of undulating average analysis method, a new two-dimensional multifractal detrend wave average analysis method is proposed, and the segmentation experiment of leaf image with lack of prime is made. The new method was applied to the potassium deficiency and magnesium deficiency leaf segmentation of rape to verify the effectiveness of the method.
【學(xué)位授予單位】:湖南農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S126;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙瑩;胡靜;黎明;遲冬祥;;基于分形維數(shù)的圖像紋理特征表示方法[J];上海電機(jī)學(xué)院學(xué)報(bào);2011年01期
2 龔紅菊;於海明;姬長英;;基于分形理論的水稻單產(chǎn)計(jì)算機(jī)視覺預(yù)測技術(shù)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2010年08期
3 金春蘭;黃華;劉壙彬;;基于多重分形的醫(yī)學(xué)圖像分割方法[J];中國組織工程研究與臨床康復(fù);2010年09期
4 劉元永;羅曉曙;陳全斌;吳雷;;多重分形譜在葉片圖像處理中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2008年28期
5 趙瑩;高雋;陳果;馮文剛;;一種基于分形理論的多尺度多方向紋理特征提取方法[J];儀器儀表學(xué)報(bào);2008年04期
6 韓書霞;戚大偉;于雷;;基于多重分形理論的原木CT腐朽圖像分析與處理[J];森林工程;2007年05期
7 肖亮,吳慧中,韋志輝;圖像多重分形測度的速降函數(shù)投影方法與圖像奇異性分析[J];電子與信息學(xué)報(bào);2005年08期
8 彭復(fù)員,周麟,閻旭光;基于相關(guān)的多重分形奇異性分析的紅外弱目標(biāo)檢測[J];紅外與毫米波學(xué)報(bào);2004年01期
9 李會(huì)方,俞卞章;一種基于多重分形新特征的圖像分割算法[J];光學(xué)精密工程;2003年06期
10 趙健,宋祖勛,俞卞章;基于多重分形分析的SAR圖像消噪增強(qiáng)研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2003年01期
相關(guān)博士學(xué)位論文 前4條
1 王訪;作物診斷的葉片圖像多重分形方法與建模[D];湖南農(nóng)業(yè)大學(xué);2013年
2 陳志軍;多重分形局部奇異性分析方法及其在礦產(chǎn)資源信息提取中的應(yīng)用[D];中國地質(zhì)大學(xué);2007年
3 李會(huì)方;多重分形理論及其在圖象處理中應(yīng)用的研究[D];西北工業(yè)大學(xué);2004年
4 李錳;地貌與地震形變場分形與多重分形特征研究[D];中國地震局地球物理研究所;2002年
相關(guān)碩士學(xué)位論文 前1條
1 王瑞;多重分形及其在圖像識(shí)別中的應(yīng)用研究[D];西北大學(xué);2010年
,本文編號(hào):2322236
本文鏈接:http://sikaile.net/kejilunwen/nykj/2322236.html