基于遙感信息的農(nóng)作物生物質(zhì)可獲取量評估及空間分布研究
[Abstract]:Scientific and accurate estimation of crop biomass and biomass energy utilization potential is a necessary prerequisite for biomass energy development and utilization strategy. With the development of remote sensing technology, the time, space and spectral resolution of the available remote sensing data are improving, which provides a powerful data support for the estimation of crop biomass in long time span and large spatial scale. In this paper, the principle and typical application of crop biomass estimation method based on remote sensing information are analyzed and summarized, and the wheat biomass estimation method based on vegetation index (Vegetation Index) is summarized. Based on the Landsat8 image data of May 1 and April 25, 2015, and taking Lu'an City, Anhui Province as an example, the wheat biomass estimation method based on vegetation index was used to estimate wheat biomass in 2015 in Lu'an City. The potential of biomass energy utilization in wheat was estimated and analyzed. First of all, the image preprocessing and image classification of the study area are processed, and the results of the six common classification algorithms are compared and analyzed by the unsupervised classification and supervised classification. The least distance classification method with the best classification effect was selected to classify the land use in Luan city, and the classification results were post-processed to extract the wheat planting area of Luan city, and the precision of the extraction was analyzed. Then, the correlation between the measured wheat biomass data and the difference vegetation index (DVI), normalized greening index (NDGI), difference vegetation index (NDVI), green vegetation index (NDVI), and ratio vegetation index (RVI) of wheat were analyzed. The results showed that the correlation between wheat biomass was the highest, the correlation coefficient was 0.760, and the correlation coefficient of RVI, was 0.655. On the basis of this, the wheat biomass was measured on the basis of the above five planting indices, and the index was linear and logarithmic, respectively. Fitting the quadratic polynomial and power function, selecting the vegetation index and fitting type with the highest determinant coefficient, establishing the wheat biomass estimation model based on NDVI exponential estimation model. The results show that the error is only 101150 tons and the error percentage is 6.89. The spatial analysis of wheat biomass and the calculation of biomass density per unit wheat in various districts and counties of Lu'an City showed that the highest biomass and biomass density of Shouxian were 637900 tons and 213.6 tons / square kilometer, respectively. Last According to the weighted average of wheat collectible coefficient and broken coal coefficient in previous studies, the wheat collectible coefficient and the broken coal coefficient in this paper are 0.766 and 0.490, respectively. The utilization potential of these coefficients to wheat biomass energy in Liuan is obtained. For estimation and analysis, The results showed that the potential of wheat biomass energy utilization in 2015 was about 551400 tons of standard coal, accounting for 13.85% of the total energy consumption in 2015. Based on the above research, it is found that the estimation method of wheat biomass and biomass energy based on remote sensing information has certain validity and practicability, and can realize wheat biomass estimation under certain precision requirements. It can provide necessary technical support for biomass energy strategy.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S127
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王福民;黃敬峰;王秀珍;;基于水稻背景特性的植被指數(shù)參數(shù)修正研究[J];農(nóng)業(yè)工程學(xué)報;2008年05期
2 何彬方;馮妍;吳文玉;范偉;;安徽省近十年植被指數(shù)時空變化特征[J];生態(tài)學(xué)雜志;2010年10期
3 解文歡;張有智;吳黎;;基于植被指數(shù)對望奎縣糧食作物產(chǎn)量預(yù)測方法的研究[J];黑龍江農(nóng)業(yè)科學(xué);2011年04期
4 康耀江;;植被指數(shù)在草地遙感中的應(yīng)用初探[J];湖南農(nóng)業(yè)科學(xué);2011年Z1期
5 張仁華,饒農(nóng)新,廖國男;植被指數(shù)的抗大氣影響探討[J];植物學(xué)報;1996年01期
6 國紅;彭世揆;趙博光;;內(nèi)蒙古鄂托克前旗地區(qū)苦豆子植被指數(shù)信息提取的研究[J];林業(yè)資源管理;2008年04期
7 范文義;白新源;馮欣;李明澤;杜華強(qiáng);;哈爾濱熱島效應(yīng)與植被指數(shù)關(guān)系的動態(tài)分析[J];東北林業(yè)大學(xué)學(xué)報;2009年06期
8 杜春雨;范文義;;葉面積指數(shù)與植被指數(shù)關(guān)系研究[J];林業(yè)勘查設(shè)計;2013年02期
9 楊潔;隋學(xué)艷;楊麗萍;郭洪海;朱振林;;山東省植被指數(shù)影像數(shù)據(jù)庫的設(shè)計與實(shí)現(xiàn)[J];安徽農(nóng)業(yè)科學(xué);2011年29期
10 胡曉雯;曹爽;趙顯富;;基于植被指數(shù)的綠地信息提取的比較[J];南京信息工程大學(xué)學(xué)報(自然科學(xué)版);2012年05期
相關(guān)會議論文 前10條
1 付卓;王錦地;施建成;宋金玲;靳華安;張立新;張鐘軍;趙少杰;陳柏松;;微波植被指數(shù)與光學(xué)植被指數(shù)在地面尺度上的關(guān)系研究[A];遙感定量反演算法研討會摘要集[C];2010年
2 辛紅梅;張杰;馬毅;初佳蘭;;基于植被指數(shù)的赤潮高光譜敏感波段確定方法初探[A];第十四屆全國遙感技術(shù)學(xué)術(shù)交流會論文選集[C];2003年
3 范錦龍;;我國晴空分布及對旬合成植被指數(shù)的影響[A];推進(jìn)氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學(xué)會2004年年會論文集(下冊)[C];2004年
4 張樹譽(yù);李登科;李星敏;周輝;;遙感植被指數(shù)及其在縣域生態(tài)環(huán)境監(jiān)測評估中的應(yīng)用[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
5 安培浚;頡耀文;;綠洲植被指數(shù)的遙感定量研究-以民勤綠洲為例[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
6 江東;王乃斌;楊小喚;劉紅輝;;植被指數(shù)—地面溫度特征空間及其應(yīng)用[A];第十三屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2001年
7 傅軍;張杰;辛紅梅;馬毅;;基于植被指數(shù)的高光譜遙感水陸識別方法初探[A];第十四屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2003年
8 肖乾廣;肖嵐;李亞君;;EOS/MODIS,FY-1D/MVISR,NOAA/AVHRR的歸一化植被指數(shù)的同化研究[A];全國國土資源與環(huán)境遙感應(yīng)用技術(shù)研討會論文集[C];2009年
9 楊道勇;肖云岫;;利用WT-10接收的1B高分辨云圖數(shù)據(jù)生成植被指數(shù)圖像[A];中國氣象學(xué)會2005年年會論文集[C];2005年
10 何全軍;曹靜;張?jiān)戮S;;基于MODIS的廣東省植被指數(shù)序列構(gòu)建與應(yīng)用[A];中國氣象學(xué)會2007年年會生態(tài)氣象業(yè)務(wù)建設(shè)與農(nóng)業(yè)氣象災(zāi)害預(yù)警分會場論文集[C];2007年
相關(guān)重要報紙文章 前1條
1 魏景云;氣象衛(wèi)星監(jiān)測干旱 全國旱情一目了然[N];中國氣象報;2003年
相關(guān)博士學(xué)位論文 前4條
1 衛(wèi)煒;MODIS雙星數(shù)據(jù)協(xié)同的耕地物候參數(shù)提取方法研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 張立福;通用光譜模式分解算法及植被指數(shù)的建立[D];武漢大學(xué);2005年
3 岳文澤;基于遙感影像的城市景觀格局及其熱環(huán)境效應(yīng)研究[D];華東師范大學(xué);2005年
4 劉占宇;水稻主要病蟲害脅迫遙感監(jiān)測研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 劉吉凱;基于HJ衛(wèi)星數(shù)據(jù)的甘蔗長勢監(jiān)測與估產(chǎn)研究[D];南京信息工程大學(xué);2015年
2 鄭亞云;榆林NDVI時空變化及驅(qū)動因子研究[D];長安大學(xué);2015年
3 何春萌;經(jīng)濟(jì)利益驅(qū)動下的工礦開發(fā)對人類生存環(huán)境的影響[D];內(nèi)蒙古大學(xué);2015年
4 劉欣偉;基于遙感數(shù)據(jù)的吉林省旱情監(jiān)測的研究與應(yīng)用[D];吉林農(nóng)業(yè)大學(xué);2015年
5 王亞楠;基于渦度相關(guān)的農(nóng)田碳通量及固碳能力遙感監(jiān)測[D];河南理工大學(xué);2015年
6 王淵博;基于遙感信息的農(nóng)作物生物質(zhì)可獲取量評估及空間分布研究[D];西南交通大學(xué);2016年
7 李相;綠洲—荒漠交錯帶淺層地下水埋深遙感提取實(shí)驗(yàn)分析[D];新疆大學(xué);2016年
8 李明君;基于冬小麥前期光譜信息的播期遙感監(jiān)測研究[D];西安科技大學(xué);2015年
9 張菁;不同磷利用效率基因型水稻的高光譜反射表型量化的初步研究[D];浙江大學(xué);2016年
10 韓春光;新疆植被指數(shù)與氣象因子的響應(yīng)關(guān)系研究[D];新疆大學(xué);2009年
,本文編號:2242419
本文鏈接:http://sikaile.net/kejilunwen/nykj/2242419.html