施有機(jī)肥對土壤及生菜中耐藥非致病菌及耐藥基因的影響研究
[Abstract]:Due to the overuse of antibiotics, a large number of antibiotic-resistant bacteria and genes exist in the farming environment and livestock excrement. Feces returned to farming may become one of the sources of drug-resistant bacteria and genes in soil. Bacterial resistance and genes of drug resistance have become environmental and food problems that endanger human health. Vegetables are the basic food for human life, in which drug-resistant bacteria and drug-resistant genes affect human health and safety through the food chain. Non-pathogenic bacteria are receptors for drug-resistant genes. Horizontal migration of drug-resistant genes (HGT) may occur more frequently in microbial ecosystems because of the large number of donor and storage intermediates, which play an important role in the migration of drug-resistant genes. It is necessary to study the influence of antibiotic resistance genes and the transmission risk of antibiotic resistance genes, which can provide scientific basis for the formulation of control strategies of antibiotic-resistant bacteria in agricultural environment and agricultural products. Effects of fertilizers on the number and multidrug resistance phenotypes of cefotaxime (CTX), erythromycin (ERM), sulfonamide (SUL), tetracycline (TET), doxycycline (DOX) and ciprofloxacin (CIP) resistant non-pathogenic bacteria in soils and lettuce; Resistance gene pool was constructed by gene cloning, resistance gene screening and sequencing. Finally, Plasmid Extraction and polymerase chain reaction (PCR) were used to analyze the potential transmission risk of drug-resistant genes. The main conclusions were as follows: (1) Fertilization significantly increased the number of CTX~r, SUL~r, ERM~r, TET~r and CiP~r in soil. The number of CTX1 ~ (-1) in the fertilizer group was higher than that in the other non-pathogenic bacteria (1-2 orders of magnitude) 15 days, 30 days and 45 days after fertilization. The number of CTX1 ~ (-1) in the fertilizer group was 10-8 CFU ~ (-1), and the number of DOX ~ (-1) was the smallest, all of which were 10-5 CFU (-1). Except DOX ~ (-1), the other five Non-drug-resistant non-pathogenic bacteria in the soil were increased with the growth of lettuce. The number of pathogenic bacteria (CTX~r, SUL~r, ERM~r, TET~r, CIP~r) decreased gradually, but the effect of Fertilization on the number of CTX~r, TET~r, CIP~r and DOX~r in soil was significant at 15 and 30 days of fertilization, especially on the number of CTX~r and CIP~r. ERM~r had significant difference at 30 days of fertilization, that is, at 45 days of lettuce picking stage, fertilization only had significant effect on the number of CIP~r in soil. (2) Fertilization could increase the number of drug-resistant non-pathogenic bacteria in lettuce. Except DOX~r, there were no other 5 species in lettuce except DOX~r. With the increase of planting time, the effect of Fertilization on the number of SUL~r in soil increases gradually, and then decreases. The effect of Fertilization on the number of TET~r and CTX~r decreases gradually, but has no significant effect on the number of ERM~r. Fertilization had no significant effect on the number of drug-resistant non-pathogenic bacteria on the 15th day and 30th day. Fertilization had no significant effect on the number of drug-resistant non-pathogenic bacteria on the 45th day, that is, on the 45th day of picking period. Multidrug-resistant bacteria also existed in lettuce. (3) InI was ubiquitous in soil and lettuce, and had nothing to do with fertilization. After fertilization, the detection rate of intI, tet and sul genes in soil and lettuce increased. The detection rate of tetC in lettuce was significantly increased, followed by tetG, tetB, tetE, tetA, tetM and tetL. Fertilization had the greatest effect on the Tet gene in soil at 30 days, but had no effect on it at 45 days. (5) After fertilization, the detection rate of tetG in lettuce was significantly increased, followed by tetM, tetB. The detection rate of tetL and tetA in fertilization group was lower than that in control group, and tetC was not detected. (6) Fertilization can increase the detection rate of strains and intI genes containing multiple resistance genes in soil and lettuce, which may increase the risk of horizontal migration of resistance genes to a certain extent. (2) Fertilization can increase the detection rate of strains and intI genes containing multiple resistance genes in lettuce. 7) Application of organic manure could increase the types of multi-drug resistant bacteria in soil and lettuce, and could change the type and abundance of multi-drug resistant genomic combination in lettuce. The dominant multidrug-resistant strains were Pseudomonas sp. and Brevibacterium sp. in the control group and the fertilization group. Arthrobacter sp. (8) InI gene and sul, tet resistance gene were detected in the plasmids of the selected multidrug-resistant non-pathogenic bacteria. The detection rate of intI in medium soil and lettuce was 100%. Therefore, the risk of horizontal transmission of drug-resistant genes in soil and lettuce may exist, and further study on the characteristics of these plasmids is needed.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S141
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王瑞旋;耿玉靜;王江勇;馮娟;李國平;;水產(chǎn)致病菌耐藥基因的研究[J];海洋環(huán)境科學(xué);2012年03期
2 路浩;王興龍;李曉艷;雷連成;魯景艷;馮新;萬家余;李忠義;楊冬;;基因芯片檢測細(xì)菌耐藥基因[J];中國獸醫(yī)學(xué)報(bào);2008年02期
3 王利勤;王晶鈺;董睿;張三東;江躍德;陳占莉;李志良;;雞源致病性大腸埃希菌中氨基糖苷類抗生素耐藥基因的檢測[J];動(dòng)物醫(yī)學(xué)進(jìn)展;2012年07期
4 李英霞;郭大偉;李洪恩;姚杰;蘇利婭;王麗平;;紅霉素與四環(huán)素耐藥基因在豬鏈球菌臨床分離株中的檢測[J];畜牧與獸醫(yī);2009年10期
5 芮萍;馬增軍;陳翠珍;段玲欣;郭玉芳;房海;;豬源鏈球菌對大環(huán)內(nèi)酯類主要耐藥基因的檢測[J];中國獸醫(yī)學(xué)報(bào);2011年06期
6 王冠玉;譚艾娟;呂世明;張劍勇;吳宗芬;;貴州豬 雞源大腸桿菌質(zhì)粒介導(dǎo)喹諾酮類耐藥基因調(diào)查[J];中國獸醫(yī)雜志;2014年04期
7 金鑫;張文廣;張燕軍;蘇蕊;王瑞軍;李金泉;;飼喂不同抗生素對肉牛廢棄糞便中四環(huán)素耐藥基因數(shù)量及持久性的影響[J];中國畜牧獸醫(yī);2012年10期
8 王麗平,陸承平;動(dòng)物源性鏈球菌紅霉素耐藥基因的分布[J];畜牧獸醫(yī)學(xué)報(bào);2005年09期
9 柳林;張文娟;田召芳;;雞致病性大腸桿菌的分離鑒定及耐藥基因的檢測[J];中國動(dòng)物檢疫;2010年07期
10 李楊;鞠玉琳;李佳佳;;中藥復(fù)方制劑連黃對沙門氏菌耐藥基因aph(3′)-Ⅱa mRNA表達(dá)水平的影響[J];湖北農(nóng)業(yè)科學(xué);2008年08期
相關(guān)會議論文 前10條
1 孔繁德;陸承平;彭海濱;徐淑菲;陳瓊;;多重PCR技術(shù)檢測沙門菌兩種四環(huán)素耐藥基因[A];第二屆全國人畜共患病學(xué)術(shù)研討會論文集[C];2008年
2 石燕華;李昌崇;;肺炎鏈球菌對β-內(nèi)酰胺類及大環(huán)內(nèi)酯類抗生素耐藥基因的研究進(jìn)展[A];第六屆江浙滬兒科學(xué)術(shù)會議暨兒科學(xué)基礎(chǔ)與臨床研究進(jìn)展學(xué)術(shù)班論文匯編[C];2009年
3 金先慶;李映良;向麗;李長春;羅慶;梁紹燕;宿玉璽;鄭改煥;;五種耐藥基因在15種332例兒童惡性腫瘤組織中表達(dá)的特點(diǎn)及臨床應(yīng)用[A];中國抗癌協(xié)會第七屆全國小兒腫瘤學(xué)術(shù)會議論文匯編[C];2007年
4 莫非;;耐甲氧西林金黃色葡萄球菌耐藥基因及消毒劑耐藥相關(guān)基因的檢測[A];第五次全國中青年檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會議論文匯編[C];2006年
5 王晶;韓麗霞;;耐亞胺培南銅綠假單胞菌的耐藥基因研究[A];中華醫(yī)學(xué)會第七次全國檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會議資料匯編[C];2008年
6 王鳳玲;馮秀河;劉靜;張竟宇;;耐甲氧西林金黃色葡萄球菌耐藥基因及致病毒素基因的研究[A];第五屆全國中醫(yī)藥免疫學(xué)術(shù)研討會——暨環(huán)境·免疫與腫瘤防治綜合交叉會議論文匯編[C];2009年
7 呂火祥;麇祖煌;胡慶豐;沈蓓瓊;;泛耐藥產(chǎn)酸克雷伯菌的耐藥基因研究[A];2007年浙江省醫(yī)學(xué)檢驗(yàn)學(xué)學(xué)術(shù)年會論文匯編[C];2007年
8 雷永良;王曉光;陳秀英;;麗水市結(jié)核分枝桿菌分離株5種耐藥基因突變特點(diǎn)分析[A];2011年浙江省醫(yī)學(xué)會醫(yī)學(xué)病毒學(xué)分會、醫(yī)學(xué)微生物與免疫學(xué)分會學(xué)術(shù)年會論文匯編[C];2011年
9 李晨;;耐甲氧西林金黃色葡萄球菌耐藥性及耐藥基因研究[A];中國醫(yī)院協(xié)會第十四屆全國醫(yī)院感染管理學(xué)術(shù)年會資料匯編[C];2007年
10 胡紅兵;熊寶華;夏維;王軍;康世秀;;新生兒甲氧西林耐藥凝固酶陰性葡萄球菌血液感染分離株耐藥基因研究[A];第六屆全國抗菌藥物臨床藥理學(xué)術(shù)會議論文集[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 記者 徐志勇;深圳發(fā)現(xiàn)兩個(gè)新型耐藥基因[N];廣東科技報(bào);2007年
2 王其玲 李水根;抗生素新耐藥基因被捕獲[N];健康報(bào);2003年
3 段軍軍 熊學(xué)莉;“探訪”我國第一條腫瘤耐藥基因[N];解放軍報(bào);2002年
4 本報(bào)記者 齊芳;人體腸道菌群耐藥基因研究獲新突破[N];光明日報(bào);2013年
5 記者 鮑文娟邋通訊員 帥菲斐;深一醫(yī)生全球率先發(fā)現(xiàn)兩新耐藥基因[N];廣州日報(bào);2007年
6 易運(yùn)文;深圳醫(yī)生全球首次發(fā)現(xiàn)耐藥基因[N];光明日報(bào);2007年
7 陳英云 喬蕤琳;我省專家首次確立控制耐藥基因表達(dá)研究思路[N];黑龍江經(jīng)濟(jì)報(bào);2010年
8 記者 陳楓;超級細(xì)菌蔓延?實(shí)為“耐藥基因”![N];南方日報(bào);2010年
9 記者 郭靜 通訊員 郝黎 張丹娜;肺癌耐藥基因找到了[N];廣東科技報(bào);2010年
10 張?zhí)锟?濫用抗生素讓環(huán)境幾度呻吟[N];中國綠色時(shí)報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 李德喜;惡唑烷酮類耐藥基因cfr和optrA在豬源MRSA和CoNS中流行及傳播機(jī)制的研究[D];中國農(nóng)業(yè)大學(xué);2016年
2 熊文廣;抗生素耐藥基因在動(dòng)物腸道中的排布和在微環(huán)境中的消減規(guī)律[D];華南農(nóng)業(yè)大學(xué);2016年
3 陳軍;生活污水中抗生素和耐藥基因的人工濕地去除機(jī)制與系統(tǒng)優(yōu)化[D];中國科學(xué)院大學(xué)(中國科學(xué)院廣州地球化學(xué)研究所);2017年
4 魯曦;低劑量抗生素刺激條件下耐藥基因水平傳播的機(jī)制研究[D];華南理工大學(xué);2012年
5 付佳倫;細(xì)菌耐藥基因在斑馬魚體內(nèi)定植、轉(zhuǎn)移規(guī)律及機(jī)制研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2017年
6 魯玉俠;食源微生物耐藥基因水平傳播抑制研究[D];華南理工大學(xué);2010年
7 王晶;慢性阻塞性肺疾病急性加重多中心病原及耐藥基因分子流行病學(xué)調(diào)查[D];中國人民解放軍醫(yī)學(xué)院;2014年
8 毛錦龍;Ⅱ-Ⅲ級星型細(xì)胞瘤體外誘導(dǎo)耐藥細(xì)胞—干細(xì)胞基因及耐藥基因研究[D];北京協(xié)和醫(yī)學(xué)院;2010年
9 葉蕾;廣州市水產(chǎn)養(yǎng)殖品中耐藥共生菌分布及耐藥基因傳播機(jī)制的研究[D];華南理工大學(xué);2012年
10 瞿婷婷;多重耐藥腸球菌耐藥基因篩選及傳播機(jī)制研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 何紅美;2014年石家莊地區(qū)圍產(chǎn)期婦女B族鏈球菌的耐藥性及其耐藥基因的研究[D];河北醫(yī)科大學(xué);2015年
2 王佳Z,
本文編號:2206185
本文鏈接:http://sikaile.net/kejilunwen/nykj/2206185.html