基于CERES-Maize與PROSAIL模型耦合的冠層反射率模擬分析
[Abstract]:Vegetation canopy is one of the important sites of physical and chemical processes in ecosystem. The theory of radiative transfer model of vegetation canopy lays a theoretical foundation for vegetation remote sensing. Ground LAI measurement methods mainly include direct measurement and indirect measurement, which are suitable for LAI estimation in small areas. Based on crop growth model simulation, LAI of whole crop growth period can be obtained, and the time continuity is strong. In this paper, the input parameters of the PROSAIL model are sensitized to the input parameters of the PROSAIL model. On the basis of perceptual analysis, the CERES-Maize maize growth model was calibrated to obtain the optimal combination of crop genetic parameters, and the LAI variation characteristics at heading stage were simulated. Finally, the model simulation results were compared by using the multi-angle spectral information at different time points and under different spike numbers from the four-dimensional tower crane observation platform to evaluate the model simulation accuracy and determine the error sources. The following: (1) The coupling CERES-Maize model PROSAIL radiation transfer model simulated the change of canopy reflectance at heading stage of maize, and the results showed that the canopy reflectance decreased with time. Although the observed emissivity is consistent with the simulated value, the measured value is higher than the simulated value, especially in the visible band (green light, red light), but the difference is not obvious in the near-infrared band. (2) Parameter sensitivity analysis shows that the change of C (6 (7) has the greatest influence on the reflectivity of the green band; brown pigment has the greatest influence on the red band about 700 nm. Near reflectance has a great influence; dry matter has a great influence on near-infrared reflectance, short-wave near-infrared reflectance and mid-infrared reflectance; the change of equivalent water thickness mainly affects the canopy reflectance in a few areas after 900 nm; the change of blade structure and hot spot coefficient has an effect on the full-band reflectance; LAI has an effect on visible light; C (6) had a little effect on the reflectance, and mainly concentrated around 450 nm. (3) Based on the ground observation data and field experiment data of Huailai Remote Sensing Station in Hebei Province in 2013, the genetic parameters of varieties related to the growth and development of C ERES-Maize model were calibrated, and the observation data of 2014 and 2015 were used. The simulation results show that the two-year LAI simulation is more accurate and can be used to simulate the long time series of maize. Combined with the observation data of meteorological stations in 2016, the LAI distribution range of Maize in the whole growth period is 0.01-5.48, and the LAI at heading period is about 4.75, which shows that the model is in good agreement with the measured data. The results showed that all parameters, such as equivalent water thickness, dry matter mass, leaf inclination, chlorophyll content and carotenoid content, fluctuated slightly and remained basically unchanged. (4) Artificial pruning was used to explore the effect of male panicle number on canopy reflectance. The results showed that the canopy reflectance of panicle-free was the highest and that of whole panicle was the lowest.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S513;S127
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊可明;卓偉;劉二雄;汪國平;夏天;;基于光譜特征參數(shù)與主成分分析的玉米葉片葉綠素含量BP反演[J];江蘇農(nóng)業(yè)科學(xué);2016年07期
2 馬建威;黃詩峰;李紀(jì)人;李小濤;宋小寧;冷佩;孫亞勇;;改進(jìn)Sobol算法支持下的PROSAIL模型參數(shù)全局敏感性分析[J];測繪通報(bào);2016年03期
3 蘇偉;郭皓;趙冬玲;劉婷;張明政;;基于優(yōu)化PROSAIL葉傾角分布函數(shù)的玉米LAI反演方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年03期
4 楊光超;朱忠禮;譚磊;劉紹民;徐自為;柏軍華;肖青;;懷來地區(qū)蒸滲儀測定玉米田蒸散發(fā)分析[J];高原氣象;2015年04期
5 包姍寧;曹春香;黃健熙;田麗燕;馬鴻元;蘇偉;倪希亮;;同化葉面積指數(shù)和蒸散發(fā)雙變量的冬小麥產(chǎn)量估測方法[J];地球信息科學(xué)學(xué)報(bào);2015年07期
6 柏軍華;肖青;柳欽火;聞建光;;遙感產(chǎn)品真實(shí)性檢驗(yàn)靶場構(gòu)建方法初步研究[J];遙感技術(shù)與應(yīng)用;2015年03期
7 黃健熙;馬鴻元;田麗燕;王鵬新;劉峻明;;基于時(shí)間序列LAI和ET同化的冬小麥遙感估產(chǎn)方法比較[J];農(nóng)業(yè)工程學(xué)報(bào);2015年04期
8 張栩然;宮阿都;李京;岳建偉;尹曉天;呂瀟然;;水分脅迫條件下玉米生產(chǎn)潛力遙感評估模型——以重慶市長壽區(qū)為例[J];遙感信息;2015年01期
9 李鳳濤;魯欣欣;王珍珍;楊錦忠;;基于多光譜特征的玉米生物參量估算模型[J];青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
10 龐澤源;董姝娜;張繼權(quán);佟志軍;劉興朋;孫仲益;;基于CERES-Maize模型的吉林西部玉米干旱脆弱性評價(jià)與區(qū)劃[J];中國生態(tài)農(nóng)業(yè)學(xué)報(bào);2014年06期
相關(guān)博士學(xué)位論文 前2條
1 肖艷芳;植被理化參數(shù)反演的尺度效應(yīng)與敏感性分析[D];首都師范大學(xué);2013年
2 郭建茂;基于遙感與作物生長模型的冬小麥生長模擬研究[D];南京信息工程大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 寇雯紅;基于CERES-Maize模型的氣候變化對東北地區(qū)玉米生產(chǎn)潛力的影響與應(yīng)對措施模擬[D];山東農(nóng)業(yè)大學(xué);2016年
2 劉天鳳;基于PROSAIL模型的干旱半干旱地區(qū)LAI遙感反演建模[D];蘭州大學(xué);2015年
3 任梓菡;基于PROSAIL模型的反射率-LAI數(shù)值分布模式研究[D];蘭州大學(xué);2014年
4 姜浩;基于作物模型同化遙感物候信息的冬小麥估產(chǎn)方法研究[D];電子科技大學(xué);2011年
5 朱元?jiǎng)?lì);基于遙感和模型同化的水稻生長監(jiān)測預(yù)測技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2009年
6 崔巧娟;未來氣候變化對中國玉米生產(chǎn)的影響評估[D];中國農(nóng)業(yè)大學(xué);2005年
7 馬玉平;基于遙感信息的華北冬小麥區(qū)域生長模型及其模擬研究[D];中國氣象科學(xué)研究院;2004年
,本文編號:2187962
本文鏈接:http://sikaile.net/kejilunwen/nykj/2187962.html