天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于CERES-Maize與PROSAIL模型耦合的冠層反射率模擬分析

發(fā)布時(shí)間:2018-08-17 14:41
【摘要】:植被冠層是生態(tài)系統(tǒng)中物理和化學(xué)進(jìn)程的重要場所之一,植被冠層輻射傳輸模型理論奠定了植被遙感界的理論基礎(chǔ)。LAI(全稱,葉面積指數(shù),下同)是表征陸地表面冠層狀況的重要指標(biāo),作為輻射傳輸模型的重要特征參量,對模型模擬和反演精度至關(guān)重要。地面LAI測量方法主要有直接測量法和間接測量法兩種,適合小區(qū)域的LAI估算;谧魑锷L模型模擬可獲取作物全生長期的LAI,時(shí)間連續(xù)性強(qiáng),目前將遙感與作物生長模型進(jìn)行耦合的研究逐漸增多,但研究的重點(diǎn)多集中在將遙感數(shù)據(jù)反演、推算的一些宏觀信息嵌入作物模擬模型或校正有關(guān)參數(shù),目的多為監(jiān)測作物長勢和估產(chǎn),而針對遙感模型在特定生育期模擬結(jié)果的評價(jià)和誤差來源分析的相關(guān)研究鮮少出現(xiàn)。本文在對PROSAIL模型輸入?yún)?shù)的進(jìn)行敏感性分析的基礎(chǔ)上,首先對CERES-Maize玉米生長模型進(jìn)行標(biāo)定,得到最優(yōu)的作物遺傳參數(shù)組合,模擬得到抽穗期LAI變化特征。然后結(jié)合分光光度計(jì)對特定生育期玉米的理化參數(shù)(葉綠素、類胡蘿卜素)觀測試驗(yàn),建立了PROSAIL模型輸入?yún)?shù)數(shù)據(jù)庫,模擬得到了玉米特定生育期的多角度冠層光譜數(shù)據(jù),最后利用四維塔吊觀測平臺觀測的不同時(shí)間點(diǎn)的多角度光譜信息和不同穗數(shù)下的多角度光譜信息對模型模擬結(jié)果進(jìn)行對比,評價(jià)模型模擬精度,確定誤差來源。主要方法和結(jié)論如下:(1)耦合CERES-Maize模型PROSAIL輻射傳輸模型模擬玉米抽穗期冠層反射率的變化情況,結(jié)果顯示冠層反射率呈隨時(shí)間的推移不斷下降。結(jié)合多角度冠層反射率觀測試驗(yàn)數(shù)據(jù)驗(yàn)證結(jié)果表明:五個(gè)時(shí)間點(diǎn)的相同觀測方位角和天頂角的冠層反射率觀測值與模型模擬值雖總體變化趨勢一致,但實(shí)測值高于模擬值,尤其在可見光波段(綠光、紅光)表現(xiàn)明顯,但在近紅外波段差異不明顯。(2)參數(shù)敏感性分析顯示:C(6(7的變化對綠光波段的反射率影響最大;褐色素對紅光波段約700nm附近的反射率值影響較大;干物質(zhì)量對近紅外波段、短波近紅外波段和中紅外波段的反射率影響較大;等效水厚度變化主要影響900nm以后的少數(shù)區(qū)間的冠層反射率值;葉片結(jié)構(gòu)和熱點(diǎn)系數(shù)的變化會對全波段反射率存在影響;LAI對可見光波段的反射率影響較大;C(6的變化對反射率的影響較小,主要集中在450nm附近。(3)利用河北懷來遙感試驗(yàn)站2013年地面觀測數(shù)據(jù)及田間試驗(yàn)資料,對CERES-Maize模型有關(guān)生長發(fā)育的品種遺傳特性參數(shù)進(jìn)行了標(biāo)定,同時(shí)利用2014、2015年的觀測數(shù)據(jù)對模型模擬結(jié)果進(jìn)行驗(yàn)證,兩年的LAI模擬均較為準(zhǔn)確,可用于玉米長時(shí)間序列模擬。結(jié)合2016年站內(nèi)氣象站的觀測數(shù)據(jù)模擬得出:玉米全生育期LAI分布區(qū)間為0.01~5.48,抽穗期的LAI在4.75左右,與實(shí)測數(shù)據(jù)吻合度較高,說明該模型對玉米抽穗期LAI模擬效果較好。對2016年玉米抽穗期的地面觀測數(shù)據(jù)進(jìn)行計(jì)算和分析發(fā)現(xiàn):等效水厚度、干物質(zhì)量、葉傾角、葉綠素含量、類胡蘿卜素含量等所有參數(shù)值均波動(dòng)較小,基本保持不變。(4)采用人工剪穗的方法探究雄穗數(shù)量對冠層反射率的影響,結(jié)果表明:無穗的冠層反射率最高,全穗的冠層反射率最低。對比五個(gè)穗梯度的觀測值和五個(gè)時(shí)間點(diǎn)的模擬和實(shí)測誤差發(fā)現(xiàn),雄穗是產(chǎn)生誤差的主要原因。
[Abstract]:Vegetation canopy is one of the important sites of physical and chemical processes in ecosystem. The theory of radiative transfer model of vegetation canopy lays a theoretical foundation for vegetation remote sensing. Ground LAI measurement methods mainly include direct measurement and indirect measurement, which are suitable for LAI estimation in small areas. Based on crop growth model simulation, LAI of whole crop growth period can be obtained, and the time continuity is strong. In this paper, the input parameters of the PROSAIL model are sensitized to the input parameters of the PROSAIL model. On the basis of perceptual analysis, the CERES-Maize maize growth model was calibrated to obtain the optimal combination of crop genetic parameters, and the LAI variation characteristics at heading stage were simulated. Finally, the model simulation results were compared by using the multi-angle spectral information at different time points and under different spike numbers from the four-dimensional tower crane observation platform to evaluate the model simulation accuracy and determine the error sources. The following: (1) The coupling CERES-Maize model PROSAIL radiation transfer model simulated the change of canopy reflectance at heading stage of maize, and the results showed that the canopy reflectance decreased with time. Although the observed emissivity is consistent with the simulated value, the measured value is higher than the simulated value, especially in the visible band (green light, red light), but the difference is not obvious in the near-infrared band. (2) Parameter sensitivity analysis shows that the change of C (6 (7) has the greatest influence on the reflectivity of the green band; brown pigment has the greatest influence on the red band about 700 nm. Near reflectance has a great influence; dry matter has a great influence on near-infrared reflectance, short-wave near-infrared reflectance and mid-infrared reflectance; the change of equivalent water thickness mainly affects the canopy reflectance in a few areas after 900 nm; the change of blade structure and hot spot coefficient has an effect on the full-band reflectance; LAI has an effect on visible light; C (6) had a little effect on the reflectance, and mainly concentrated around 450 nm. (3) Based on the ground observation data and field experiment data of Huailai Remote Sensing Station in Hebei Province in 2013, the genetic parameters of varieties related to the growth and development of C ERES-Maize model were calibrated, and the observation data of 2014 and 2015 were used. The simulation results show that the two-year LAI simulation is more accurate and can be used to simulate the long time series of maize. Combined with the observation data of meteorological stations in 2016, the LAI distribution range of Maize in the whole growth period is 0.01-5.48, and the LAI at heading period is about 4.75, which shows that the model is in good agreement with the measured data. The results showed that all parameters, such as equivalent water thickness, dry matter mass, leaf inclination, chlorophyll content and carotenoid content, fluctuated slightly and remained basically unchanged. (4) Artificial pruning was used to explore the effect of male panicle number on canopy reflectance. The results showed that the canopy reflectance of panicle-free was the highest and that of whole panicle was the lowest.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S513;S127

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊可明;卓偉;劉二雄;汪國平;夏天;;基于光譜特征參數(shù)與主成分分析的玉米葉片葉綠素含量BP反演[J];江蘇農(nóng)業(yè)科學(xué);2016年07期

2 馬建威;黃詩峰;李紀(jì)人;李小濤;宋小寧;冷佩;孫亞勇;;改進(jìn)Sobol算法支持下的PROSAIL模型參數(shù)全局敏感性分析[J];測繪通報(bào);2016年03期

3 蘇偉;郭皓;趙冬玲;劉婷;張明政;;基于優(yōu)化PROSAIL葉傾角分布函數(shù)的玉米LAI反演方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年03期

4 楊光超;朱忠禮;譚磊;劉紹民;徐自為;柏軍華;肖青;;懷來地區(qū)蒸滲儀測定玉米田蒸散發(fā)分析[J];高原氣象;2015年04期

5 包姍寧;曹春香;黃健熙;田麗燕;馬鴻元;蘇偉;倪希亮;;同化葉面積指數(shù)和蒸散發(fā)雙變量的冬小麥產(chǎn)量估測方法[J];地球信息科學(xué)學(xué)報(bào);2015年07期

6 柏軍華;肖青;柳欽火;聞建光;;遙感產(chǎn)品真實(shí)性檢驗(yàn)靶場構(gòu)建方法初步研究[J];遙感技術(shù)與應(yīng)用;2015年03期

7 黃健熙;馬鴻元;田麗燕;王鵬新;劉峻明;;基于時(shí)間序列LAI和ET同化的冬小麥遙感估產(chǎn)方法比較[J];農(nóng)業(yè)工程學(xué)報(bào);2015年04期

8 張栩然;宮阿都;李京;岳建偉;尹曉天;呂瀟然;;水分脅迫條件下玉米生產(chǎn)潛力遙感評估模型——以重慶市長壽區(qū)為例[J];遙感信息;2015年01期

9 李鳳濤;魯欣欣;王珍珍;楊錦忠;;基于多光譜特征的玉米生物參量估算模型[J];青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期

10 龐澤源;董姝娜;張繼權(quán);佟志軍;劉興朋;孫仲益;;基于CERES-Maize模型的吉林西部玉米干旱脆弱性評價(jià)與區(qū)劃[J];中國生態(tài)農(nóng)業(yè)學(xué)報(bào);2014年06期

相關(guān)博士學(xué)位論文 前2條

1 肖艷芳;植被理化參數(shù)反演的尺度效應(yīng)與敏感性分析[D];首都師范大學(xué);2013年

2 郭建茂;基于遙感與作物生長模型的冬小麥生長模擬研究[D];南京信息工程大學(xué);2007年

相關(guān)碩士學(xué)位論文 前7條

1 寇雯紅;基于CERES-Maize模型的氣候變化對東北地區(qū)玉米生產(chǎn)潛力的影響與應(yīng)對措施模擬[D];山東農(nóng)業(yè)大學(xué);2016年

2 劉天鳳;基于PROSAIL模型的干旱半干旱地區(qū)LAI遙感反演建模[D];蘭州大學(xué);2015年

3 任梓菡;基于PROSAIL模型的反射率-LAI數(shù)值分布模式研究[D];蘭州大學(xué);2014年

4 姜浩;基于作物模型同化遙感物候信息的冬小麥估產(chǎn)方法研究[D];電子科技大學(xué);2011年

5 朱元?jiǎng)?lì);基于遙感和模型同化的水稻生長監(jiān)測預(yù)測技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2009年

6 崔巧娟;未來氣候變化對中國玉米生產(chǎn)的影響評估[D];中國農(nóng)業(yè)大學(xué);2005年

7 馬玉平;基于遙感信息的華北冬小麥區(qū)域生長模型及其模擬研究[D];中國氣象科學(xué)研究院;2004年

,

本文編號:2187962

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/2187962.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0bc76***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com