河南省夏季土壤濕度反演模型研究
[Abstract]:Drought disaster is a kind of complex natural disaster frequently occurring in the world, which has a great impact on the global natural ecological environment and the social and economic activities of human beings. Therefore, drought disaster has been one of the hotspots of research. Henan Province is affected by the monsoon, the precipitation is uneven in the whole year, and it is frequently and seriously affected by the drought disaster in summer. Soil moisture is one of the important evaluation indexes of drought. There is a strong nonlinear coupling relationship between soil moisture and various factors. It is necessary to fully consider the factors that affect the monitoring and establish a monitoring model to meet the actual needs. In this paper, Henan Province is taken as the main research area, using MODIS remote sensing data from 2007 to 2012, based on TVDI index method and neural network algorithm, the inversion model of soil moisture is studied. The dynamic monitoring model of drought disaster in the study area is obtained. The main research results are as follows: (1) based on MODIS data Dem and measured data, soil moisture inversion model in summer of Henan Province is established based on TVDI index method and neural network algorithm. The spatial distribution of soil moisture with high resolution was obtained. The two inversion models can objectively reflect the spatial distribution of soil moisture, but there are some differences between the two methods in the inversion value. Among them, the soil moisture value retrieved by TVDI exponent method is small. (2) the error and correlation between the inversion model based on neural network and the inversion model based on remote sensing index and the measured soil moisture are analyzed. It is found that the precision of the neural network model combined with the influence factors of soil moisture is more accurate than that of the TVDI exponent inversion model. It shows that the algorithm model can better describe the spatial distribution characteristics of soil moisture. (3) based on the soil moisture model based on neural network, the distribution map of summer drought disaster in Henan Province in 2012 is constructed. The results show that the drought in summer of 2012 is relatively light, in which June is more serious, August is lighter, and there is almost no drought in July. The drought frequency is higher in north Henan, western Henan and central Henan. In this paper, a dynamic inversion model of soil moisture with high resolution combined with the influence factors of soil moisture was established, which realized the fine expression of high resolution of soil moisture, and achieved the purpose of monitoring the development and change of drought disasters in the study area.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S152.71;S423
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁春曉;周汝良;葉江霞;張志勇;田圓;;地形起伏對(duì)陸地衛(wèi)星的NDVI影響研究[J];林業(yè)資源管理;2016年04期
2 吳謙;王常明;王天佐;黃曉虎;張志敏;張兆楠;;路基邊坡降雨試驗(yàn)及基于神經(jīng)網(wǎng)絡(luò)的水分場(chǎng)研究[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
3 石玉;宮恒瑞;張旭;李聰;;風(fēng)云三號(hào)溫度植被指數(shù)反演土壤濕度研究[J];測(cè)繪科學(xué);2015年11期
4 尤加俊;安如;;基于CCI和MODIS數(shù)據(jù)的淮河流域地表土壤濕度降尺度方法研究[J];測(cè)繪與空間地理信息;2015年02期
5 張清河;徐飛;鄒啟源;;微擾法結(jié)合最小二乘支持向量機(jī)反演土壤濕度[J];電波科學(xué)學(xué)報(bào);2015年02期
6 李爽;宋小寧;王亞維;王睿馨;;基于AMSR-E數(shù)據(jù)的中國(guó)地區(qū)微波濕度指數(shù)研究[J];國(guó)土資源遙感;2015年01期
7 劉興杰;岑添云;鄭文書(shū);米增強(qiáng);;基于模糊粗糙集與改進(jìn)聚類的神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測(cè)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年19期
8 鮑艷松;嚴(yán)婧;閔錦忠;王冬梅;李紫甜;李鑫川;;基于溫度植被干旱指數(shù)的江蘇淮北地區(qū)農(nóng)業(yè)旱情監(jiān)測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年07期
9 董彥;林開(kāi)平;黃小燕;;南海熱帶氣旋大風(fēng)的遺傳-神經(jīng)網(wǎng)絡(luò)集合預(yù)報(bào)[J];氣象研究與應(yīng)用;2014年01期
10 陳禎;;不同土壤含水率、體積質(zhì)量及光譜反射率的關(guān)系模型[J];農(nóng)業(yè)工程學(xué)報(bào);2012年04期
相關(guān)會(huì)議論文 前1條
1 辛景峰;付俊娥;;農(nóng)業(yè)旱情遙感監(jiān)測(cè)研究[A];全國(guó)旱情監(jiān)測(cè)技術(shù)與抗旱減災(zāi)措施論文集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無(wú)線通信算法研究[D];山東大學(xué);2015年
2 楊娜;基于云參數(shù)干旱遙感監(jiān)測(cè)模型與集合卡爾曼濾波的土壤濕度同化研究[D];武漢大學(xué);2010年
3 林開(kāi)平;人工神經(jīng)網(wǎng)絡(luò)的泛化性能與降水預(yù)報(bào)的應(yīng)用研究[D];南京信息工程大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 萬(wàn)曙靜;基于多源數(shù)據(jù)的土壤濕度提取方法研究[D];山東農(nóng)業(yè)大學(xué);2015年
2 丁智慧;基于MODIS數(shù)據(jù)土壤濕度反演研究[D];中國(guó)石油大學(xué)(華東);2014年
3 王君;基于MODIS產(chǎn)品的青海省干旱監(jiān)測(cè)[D];中南大學(xué);2014年
4 嚴(yán)婧;基于數(shù)據(jù)重建的土壤水分遙感監(jiān)測(cè)系統(tǒng)研究[D];南京信息工程大學(xué);2013年
5 唐田;基于AMSR-E和RBF神經(jīng)網(wǎng)絡(luò)的川中丘陵區(qū)土壤水分反演[D];四川農(nóng)業(yè)大學(xué);2013年
6 王春娟;基于BP神經(jīng)網(wǎng)絡(luò)的臺(tái)風(fēng)降雨預(yù)報(bào)研究[D];浙江師范大學(xué);2013年
7 宋榮杰;基于遙感的旱區(qū)土壤濕度反演方法研究[D];西北農(nóng)林科技大學(xué);2013年
8 黃飛;基于AMSR-E和BP神經(jīng)網(wǎng)絡(luò)的川中丘陵區(qū)土壤水分反演[D];四川農(nóng)業(yè)大學(xué);2012年
9 胡玉琢;改進(jìn)型灰色神經(jīng)網(wǎng)絡(luò)模型在水質(zhì)預(yù)測(cè)中的應(yīng)用[D];重慶大學(xué);2010年
10 黃麗;BP神經(jīng)網(wǎng)絡(luò)算法改進(jìn)及應(yīng)用研究[D];重慶師范大學(xué);2008年
,本文編號(hào):2168078
本文鏈接:http://sikaile.net/kejilunwen/nykj/2168078.html