亞熱帶典型植被類型土壤水變化規(guī)律及影響機(jī)制研究
[Abstract]:Soil water is an important material basis for plant growth and survival. The study of forest soil water is of great significance to soil and water conservation, ecological protection and forestry management. The difference of forest vegetation types leads to the difference of soil bulk density, soil organic carbon amount, water stable aggregate, soil water saturation conductivity and so on. This study took the evergreen broad-leaved forest in Zhejiang Fengyang Mountain National Nature Reserve, the mixed forest of needle and broad-leaved forest, bamboo forest and tea garden as the research object. Through field investigation, simulation experiment, fixed observation, indoor analysis and so on, the paper studied the root perforation, soil characteristic factor and section structure of the tree. In the course of the study, in order to characterize the change characteristics of soil moisture content and the effect of tree root on the priority flow, the "time index of soil moisture content change", "soil water content change amplitude index", "root penetration ratio of fine root", "relative osmosis area of root system" and "root" were defined. The results are as follows: (1) the vegetation types have significant influence on soil properties and fine root biomass. With the increase of soil depth, the soil bulk density of 4 types of soil is on the rise, and the total organic carbon in soil decreases. The soil capillary porosity increases with the soil depth in the evergreen broad-leaved forest and the coniferous and broad-leaved mixed forest. The porosity of soil capillary in the bamboo forest and the tea garden was not significant. The soil non capillary porosity increased after the evergreen broad-leaved Lin Xian descended, and increased in the coniferous and broad-leaved mixed forest and bamboo forest, and decreased in the tea garden; the evergreen broad-leaved forest, the mixed forest and bamboo forest of the broad-leaved forest and the bamboo forest showed a declining trend in the tea garden. The content of large soil aggregate in the evergreen broad-leaved forest decreased first and then decreased in the coniferous broad-leaved forest. There was no significant difference between the bamboo forest and the tea garden. The soil medium aggregate content increased first in the evergreen broad-leaved forest and bamboo forest, and then increased in the coniferous broad-leaved forest and the tea garden. The soil small water stability was reduced. The aggregate content increased first in evergreen broad-leaved forest and tea garden, and increased gradually in the coniferous and broad-leaved mixed forest, but remained unchanged in the bamboo forest. The main influencing factors of the composition structure of water stable aggregates were soil total organic carbon, non capillary porosity, and fine root biomass. With the increase of soil depth, the soil saturated water conductivity was evergreen broad-leaved. There is an upward trend in the forest and bamboo forest, but in the tea garden, the difference is not significant, but in the tea garden, the soil saturated water stability aggregate and the medium water stable aggregate have great influence on the soil saturated water conductivity, and the proportion of the influence degree is 5, respectively. In 1.2%, 17%, 10.6%. (2) evergreen broad-leaved forests, soil moisture content in soil layer 0-10cm and 10-20cm is close, but lower than that in 20-30cm soil layer; the soil water content of soil layer is close to that of the mixed forest and bamboo forest. The water content of the soil layer in the tea garden is similar to that of the evergreen broad-leaved forest, but the water content of different soil layers in the tea garden is significant. In 2014, 2015, 2016, 4 plants were planted. The maximum water content of each soil layer appeared in the spring and summer season of 5-8 months, while the minimum water content of each soil layer appeared in the winter from November to January of the following year. The rainfall has a leading role in the change of soil moisture content, and the rainfall time is the most important positive effect factor affecting the time index of soil water content, "soil water content" The path coefficient between the rate of change time index and the rainfall time is 0.699, and the total rainfall is the most important negative effect factor affecting the change amplitude index of soil water content, and the path coefficient between the change amplitude index of soil moisture content and the total rainfall is 0.549, in addition, the above index increases with the increase of soil temperature. (3) (3) with the increase of rainfall intensity, the priority flow generated by the section, the priority flow generated by the dry root, and the priority flow generated by the fine roots of the 1mm and the 2mm root diameter increase gradually, and the increase is increased. The preferential flow generated by the root and the preferential flow generated by the 1mm and the root diameter of 2mm are greatly different, especially when the rainfall intensity is 240mm h~ (-1), the priority flow generated by the 10cm soil layer via the section, and the priority flow generated by the root diameter of the 1mm and the 2mm root diameter are obviously greater than 20cm and 30cm. Under the same rainfall intensity, compared with the 30cm soil layer, the difference between the preferential flow produced by the 10cm soil layer and the priority flow generated by the dry root can reach 10 times respectively. The difference of the priority flow produced by the fine root diameter of the 1mm and the 2mm root is 70 and 20 times respectively. The regularity is different. The rainfall intensity is 150 mm h~ (-1), 200 mm h~ (-1) and 240 mm h~ (-1), and there is a significant difference in the root penetration ratio of the 10 cm soil layer, the 1mm root and the root root penetration ratio of 2mm fine root, and the difference of the root penetration ratio of the different types of root roots is not significant, and the rainfall intensity is 100, 150, 200, respectively. Under the conditions of mm h~ (-1) and 240 mm h~ (-1), the difference of the relative permeation area of each root system is mainly reflected in the 10 cm soil layer, and the relative permeability area of the root system is not significant in the rest of the soil layer. Under the condition of the rainfall intensity of 150 mm h~ (-1), 200 mm h~, and 240 Now 10 cm soil layer. After analyzing the structural equilibrium equation model of "root penetration ratio" and "root penetration influence index", it is found that all factors can explain the 73.2% "root penetration influence index", in which the rainfall intensity and "root penetration ratio" have significant direct positive effects on the "root permeability influence index". (4) Under the conditions of artificial rainfall and natural rainfall, the phenomenon that the flow of soil priority flow is gradually reduced or even stopped is found. This study defines it as "soil embolism", referred to as "soil embolus", which is called "soil embolism elimination", referred to as "soil suppository elimination". With the extension of time, the total amount of soil preferential flow generated by the fine roots is gradually decreasing; the number of fine roots producing priority flow presents a downward trend in general; although the number of fine roots that produces the priority flow is generally decreasing, the fine roots that produce a partial first flow of flow will no longer produce an advantage over each observation. "Soil embolism" and "soil embolism elimination" occurred in the process of preferential flow generated by soil profiles, dry roots, 1mm and 2mm fine roots in the simulated rainfall conditions. Under the condition of rainfall intensity, soil embolism can be eliminated more easily under the condition of greater rainfall intensity.
【學(xué)位授予單位】:南京林業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S714
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王玉森,杜宏,黃保同,衡勇;西峽縣不同植被類型截流效益研究[J];河南林業(yè)科技;2002年04期
2 郭濤;楊小波;李東海;吳慶書;曹士偉;孫波;;海南萬寧神州半島自然植被類型及其特征分析[J];林業(yè)資源管理;2008年02期
3 劉世梁;劉琦;王聰;楊玨婕;鄧麗;;道路建設(shè)對區(qū)域植被類型的影響[J];應(yīng)用生態(tài)學(xué)報;2013年05期
4 喬秉鈞;寇有觀;;浙江省山地丘陵區(qū)植被類型在遙感影象中的解譯[J];中國草原;1983年02期
5 徐孟奇;;岳陽市植被類型與區(qū)劃[J];湖南林業(yè)科技;1988年01期
6 黃承標(biāo);韋炳二;黎潔娟;;廣西不同植被類型地表徑流的研究[J];林業(yè)科學(xué);1991年05期
7 張輯;劉曉英;;陽泉市王母垴山植被類型及組成特征調(diào)查分析[J];安徽農(nóng)學(xué)通報(下半月刊);2009年20期
8 程積民;;程兒山植被類型及生產(chǎn)力的調(diào)查研究[J];寧夏農(nóng)業(yè)科技;1985年04期
9 谷奉天;魯北的貝沙崗與貝沙植被類型[J];植物生態(tài)學(xué)與地植物學(xué)學(xué)報;1990年03期
10 劉千枝;景電灌區(qū)植被類型對風(fēng)沙流結(jié)構(gòu)的影響[J];甘肅林業(yè)科技;1997年03期
相關(guān)會議論文 前10條
1 高賢明;王巍;華日剛;黃遠(yuǎn)超;歐陽彥如;;河南省連康山自然保護(hù)區(qū)植被類型的研究[A];生物多樣性與人類未來——第二屆全國生物多樣性保護(hù)與持續(xù)利用研討會論文集[C];1996年
2 陳靈芝;;中國植被類型多樣性及其保護(hù)對策[A];生物多樣性研究進(jìn)展——首屆全國生物多樣性保護(hù)與持續(xù)利用研討會論文集[C];1994年
3 李良厚;范定臣;王晶;;太行山南段石灰?guī)r低山區(qū)植被類型布局優(yōu)化研究[A];第二屆全國水土保持生態(tài)修復(fù)學(xué)術(shù)研討會論文集[C];2010年
4 高賢明;王巍;李慶康;馬克平;陳靈芝;;中國暖溫帶中部山區(qū)主要自然植被類型[A];生物多樣性保護(hù)與區(qū)域可持續(xù)發(fā)展——第四屆全國生物多樣性保護(hù)與持續(xù)利用研討會論文集[C];2000年
5 彭代亮;劉良云;胡勇;劉玲玲;;基于GIMMS NDVI的亞歐大陸FPAR反演[A];第十七屆中國遙感大會摘要集[C];2010年
6 楊華;杜國堅(jiān);陳卓梅;程詩明;陳友吾;;天荒坪鎮(zhèn)生物多樣性現(xiàn)狀及保護(hù)對策[A];浙江省第三屆生物多樣性保護(hù)與可持續(xù)發(fā)展研討會會議論文摘要集[C];2006年
7 王國明;;舟山海島典型植被類型和群落結(jié)構(gòu)特征[A];生態(tài)文明建設(shè)中的植物學(xué):現(xiàn)在與未來——中國植物學(xué)會第十五屆會員代表大會暨八十周年學(xué)術(shù)年會論文集——第2分會場:植物生態(tài)與環(huán)境保護(hù)[C];2013年
8 李毅;邵明安;;覆膜條件下土壤水、鹽、熱耦合遷移研究進(jìn)展[A];《自然地理學(xué)與生態(tài)建設(shè)》論文集[C];2006年
9 陳海波;冶林茂;范玉蘭;;三種土壤含水率測量方法的綜合對比分析[A];中國氣象學(xué)會2007年年會氣象綜合探測技術(shù)分會場論文集[C];2007年
10 洪昌紅;黃本勝;邱靜;王珍;楊靜學(xué);徐敬華;;幼生桉表層土壤含水率變化研究[A];中國水利學(xué)會2013學(xué)術(shù)年會論文集——S1水資源與水生態(tài)[C];2013年
相關(guān)重要報紙文章 前4條
1 鐵錚;青年生態(tài)學(xué)家方精云當(dāng)選中科院院士[N];中國綠色時報;2005年
2 李曉麗 賈達(dá)明;退耕后 還林還是還草?[N];人民政協(xié)報;2001年
3 劉錕鋒;8月份降水較歷年同期偏少53%[N];青島日報;2009年
4 記者 胡馨婷;“江南清麗地”著力打造生態(tài)生產(chǎn)力[N];嘉興日報;2008年
相關(guān)博士學(xué)位論文 前10條
1 郭曉平;亞熱帶典型植被類型土壤水變化規(guī)律及影響機(jī)制研究[D];南京林業(yè)大學(xué);2017年
2 田琴;黃土丘陵區(qū)典型植被類型土壤微生物及異養(yǎng)呼吸特征[D];中國科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心;2017年
3 王小華;“秸軒集中溝埋還田”新型耕作技術(shù)土壤理化性狀和有機(jī)碳研究[D];南京農(nóng)業(yè)大學(xué);2014年
4 姜建梅;基于濱海平原區(qū)淺層地下水對土壤水汽熱耦合運(yùn)移規(guī)律的影響研究[D];天津大學(xué);2015年
5 付曉莉;水蝕風(fēng)蝕交錯區(qū)土壤水、碳、氮、磷分布及有關(guān)過程對植被類型的響應(yīng)[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2010年
6 卜曉莉;武夷山不同海拔植被土壤有機(jī)質(zhì)化學(xué)結(jié)構(gòu)表征及降解[D];南京林業(yè)大學(xué);2010年
7 李毅;覆膜條件下土壤水、鹽、熱耦合遷移試驗(yàn)研究[D];西安理工大學(xué);2002年
8 武敏;遼西褐土溝灌侵蝕過程研究[D];沈陽農(nóng)業(yè)大學(xué);2015年
9 馬玉瑩;精確測量土壤水的體積置換方法研究[D];中國農(nóng)業(yè)大學(xué);2016年
10 成劍波;基于C/N調(diào)節(jié)的沼液灌溉土壤氮淋溶控制研究[D];西南大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 汪麗平;陜西省植被類型的空間分布[D];西北農(nóng)林科技大學(xué);2015年
2 石文靜;青藏高原植被類型對土壤磷組分及礦化的影響[D];蘭州大學(xué);2015年
3 陳雨鷗;大連城山頭海濱地貌國家級自然保護(hù)區(qū)高等植物多樣性研究[D];遼寧師范大學(xué);2015年
4 李菲;典型喀斯特山區(qū)不同植被類型土壤水分動態(tài)變化及其對植物光合作用的響應(yīng)[D];貴州師范大學(xué);2016年
5 趙卿;基于VTVDI的江西省干旱遙感監(jiān)測研究[D];華中農(nóng)業(yè)大學(xué);2016年
6 吳林世;湘中湘南石灰?guī)r區(qū)植被類型與土壤因子關(guān)系研究[D];中南林業(yè)科技大學(xué);2016年
7 郭穎;青藏高原不同植被類型土壤磷分布特征及影響因素[D];天津師范大學(xué);2017年
8 路莉;秦巴山區(qū)植被類型時空變化特征及驅(qū)動力研究[D];西北大學(xué);2009年
9 吳雪仙;嘉陵江上游低山暴雨區(qū)不同植被類型的氮循環(huán)研究[D];四川農(nóng)業(yè)大學(xué);2007年
10 曾月娥;砒砂巖區(qū)典型地域植被類型空間配置研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2013年
,本文編號:2150988
本文鏈接:http://sikaile.net/kejilunwen/nykj/2150988.html