文登區(qū)土壤有機質(zhì)及有效態(tài)微量元素的空間分布和影響因子分析
本文選題:土壤有機質(zhì) + 有效態(tài)微量元素; 參考:《山東農(nóng)業(yè)大學》2017年碩士論文
【摘要】:土地的節(jié)約集約利用首先要對土壤養(yǎng)分進行科學管理和施肥,有助于農(nóng)業(yè)發(fā)展。對土壤養(yǎng)分的空間異質(zhì)性進行充分了解并掌握養(yǎng)分分布規(guī)律,才能進行更深入的定性定量分析研究,這也是科學管理土壤養(yǎng)分以及有效、精準、合理施肥的基礎(劉杏梅,2003)。土壤有機質(zhì)和有效態(tài)微量元素的含量是指示土壤中肥力的重要指標,在農(nóng)業(yè)生產(chǎn)中土壤有機質(zhì)和微量元素的含量是農(nóng)產(chǎn)品產(chǎn)量和品質(zhì)的重要限制性因子。本研究通過結合傳統(tǒng)統(tǒng)計學、地統(tǒng)計學和應用GIS的方法,研究分析了威海市文登區(qū)的土壤有機質(zhì)和有效態(tài)微量元素的空間分布特征和變異規(guī)律,初步分析了部分土壤養(yǎng)分狀況和相關影響因子并探討了養(yǎng)分的分區(qū)管理以及合理施肥的依據(jù),主要研究內(nèi)容和結果如下:(1)對文登區(qū)2010年1300個土壤采樣點進行化驗收集整理并進行一般描述性統(tǒng)計,結果表明,有機質(zhì)和有效態(tài)微量元素均符合正態(tài)分布,SOM含量平均值為10.48 g/kg;有效態(tài)鐵、錳、銅、鋅、硼的含量平均值為42.62 mg/kg、39.95 mg/kg、3.36mg/kg、2.22 mg/kg、0.27 mg/kg;從平均值來看,有機質(zhì)在適中范圍內(nèi)的中下范圍區(qū)(10.0~20.0 g/kg),有效態(tài)硼處于缺乏狀態(tài)(0.2~0.5 mg/kg),有效態(tài)鋅處于含量豐富區(qū)(1.0~3.0 mg/kg),其余的元素有效態(tài)鐵、有效態(tài)錳和有效態(tài)銅超出最高臨界值,尤其是有效態(tài)錳遠遠超出臨界值(30 mg/kg)。其中有效態(tài)鐵、錳、銅、鋅分別超出適中值4倍、2.5倍、3倍、2倍。除此之外,土壤有機質(zhì)和五種土壤有效態(tài)微量元素的變異系數(shù)在15.74%-66.67%之間,可知都是中等變異程度。(2)在GS+7.0半方差分析軟件中分析得出,除了有效態(tài)鐵是純塊金效應外,土壤有機質(zhì)最佳擬合模型為球面模型,有效態(tài)錳、銅、鋅均為指數(shù)模型,有效態(tài)硼為高斯模型。土壤有效態(tài)鐵塊金值較大,土壤有機質(zhì)次之,其他四種微量元素塊金值較小,說明在最小間距內(nèi)的變異分析過程中引起的誤差較小。土壤有效態(tài)鐵的塊金值與基臺的比值等于1,為純塊金效應,在整個尺度上具有恒定變異。有機質(zhì)和有效態(tài)硼的塊金值與基臺值的比值較大,空間相關性弱,耕種制度、施肥條件等人為活動對分布影響比較大,土壤有效態(tài)錳、銅、鋅的塊基比較小,說明空間相關性強,說明在該研究區(qū)域內(nèi),空間變異性主要影響因素是結構性因素。從變程來看,不同元素的變程差異很大,變程最大的為有效態(tài)錳,為1021m;最小為有效態(tài)銅,為275m;有效態(tài)鋅、有效態(tài)銅、有效態(tài)錳變程都在200m-400m之間,影響范圍較小,空間自相關距離小。(3)根據(jù)普通克里格內(nèi)插法得到的土壤有機質(zhì)和五種有效態(tài)微量元素的空間分布圖可知,土壤有效態(tài)鋅沒有明顯的分布規(guī)律,分布比較細碎化;土壤有機質(zhì)和有效態(tài)鐵呈現(xiàn)條帶狀分布;土壤有效態(tài)錳、銅、硼分布呈現(xiàn)斑塊化;除土壤有效態(tài)鐵只有一個分區(qū)外,土壤有機質(zhì)和其他四種有效態(tài)微量元素均分為兩個區(qū)。(4)將土壤采樣點和結構性因素進行疊加分析,結果可知,土壤酸堿度、坡度、土地利用類型、土壤類型、土壤質(zhì)地對有機質(zhì)和微量元素的有效性均有不同程度的影響。土地利用類型中,變化表現(xiàn)為菜地果園農(nóng)田藥材;土壤酸堿度分布圖中,中性土壤中有機質(zhì)含量最多,其次是弱酸性和強酸性;在不同土壤質(zhì)地,土壤有機質(zhì)平均含量變化是中壤輕壤砂壤砂土;在坡度分析中,土壤有機質(zhì)在3°∽15°范圍含量最高,然后是≤3°范圍區(qū)、≥15°范圍區(qū),并不是隨著坡度降低含量逐漸增多,受人為因素影響較大;在土壤類型中,棕壤中有機質(zhì)含量最多,然后依次是潮土、粗骨土、石質(zhì)土、風沙土。在對五種土壤有效態(tài)微量元素的分析中,有效態(tài)鋅、硼受不同因素影響最少,有效態(tài)鋅受土壤類型、利用類型的影響,有效態(tài)硼受坡度、土壤類型、利用類型的影響,有效態(tài)錳在土壤酸堿度、坡度、土壤類型的影響下與其他微量元素表現(xiàn)相反,對于有效態(tài)鐵,除了利用類型外,其他四個要素對其有不同程度的影響。
[Abstract]:The conservation and intensive use of land should be the first to carry out scientific management and fertilization of soil nutrients, which will help the development of agriculture. To fully understand the spatial heterogeneity of soil nutrients and to master the distribution rules of nutrients, can we carry out a more in-depth qualitative and quantitative analysis, which is also the scientific management of soil nutrients and effective, accurate and reasonable fertilization. The basis (Liu Xingmei, 2003). The content of soil organic matter and effective trace elements is an important indicator of soil fertility. In agricultural production, the content of soil organic matter and trace elements is an important limiting factor for the yield and quality of agricultural products. This study has been studied by combining traditional statistics, geostatistics and GIS methods. The spatial distribution characteristics and variation laws of soil organic matter and effective trace elements in Wendeng District of Weihai were analyzed. Some soil nutrient status and related factors were preliminarily analyzed, and the subregional management of nutrients and the basis for rational fertilization were discussed. The main contents and results were as follows: (1) 1300 soil mining in 2010 in Wendeng District The samples were collected and collected for general descriptive statistics. The results showed that the organic matter and the effective trace elements were in normal distribution. The average value of SOM content was 10.48 g/kg, and the average content of the effective iron, manganese, copper, zinc and boron was 42.62 mg/kg, 39.95 mg/kg, 3.36mg/kg, 2.22 mg/kg, 0.27 mg/kg, and the organic matter was in the mean value. In the moderate range (10.0~20.0 g/kg), the effective state boron is in the lack of state (0.2~0.5 mg/kg), the effective state zinc is in the rich region (1.0~3.0 mg/kg), the other elements are effective iron, the effective state manganese and effective copper exceed the maximum critical value, especially the effective manganese is far beyond the critical value (30 mg/kg). Copper and zinc are 4 times, 2.5 times, 3 times and 2 times of the moderate value respectively. In addition, the coefficient of variation of soil organic matter and five soil effective trace elements is between 15.74%-66.67% and the degree of medium variation. (2) in the analysis of GS+7.0 semi variance analysis software, the soil organic matter is best fit except that the effective iron is the pure gold effect. The model is spherical model. The effective state manganese, copper and zinc are all exponential models, and the effective state boron is Gauss model. The soil effective iron block gold value is larger, the soil organic matter is second, the other four kinds of trace elements are small, which shows that the error caused by the variation analysis process in the minimum distance is smaller. The ratio is equal to 1, for the pure bulk gold effect, there is a constant variation on the whole scale. The ratio of the value of the organic matter and the effective state boron to the base station value is larger, the spatial correlation is weak, the cultivation system, the fertilizer condition and so on are relatively large, the soil effective manganese, copper and zinc are relatively small, indicating that the spatial correlation is strong, indicating that the spatial correlation is strong, indicating that the spatial correlation is strong and that the spatial correlation is strong. In the study area, the main factors affecting the spatial variability are structural factors. From the point of view of the variation, the variation range of different elements is very large, the most effective state of manganese, 1021m, the minimum effective copper, 275m, the effective state of zinc, the effective state of copper and the effective state of manganese are between 200m-400m, and the space autocorrelation distance is small. (3) according to the spatial distribution map of soil organic matter and five effective trace elements obtained by common CLG interpolation, there is no obvious distribution law of available zinc in soil, and the distribution of soil organic matter and effective iron present strip distribution; soil available manganese, copper and boron are distributed in patches; the soil is effective in addition to soil. The soil organic matter and the other four effective trace elements are divided into two regions. (4) the soil sampling points and the structural factors are superimposed. The results show that the soil pH, slope, land use type, soil type and soil texture have different effects on the effectiveness of organic matter and trace elements. In the type of land use, the change is shown in the vegetable garden of the vegetable field. In the soil pH distribution map, the content of organic matter in the neutral soil is the most, followed by weak acid and strong acid. In the different soil texture, the change of the average content of soil organic matter is in the medium soil light soil sandy soil sand soil; in the slope analysis, the soil organic matter is in the range of 3 degrees 15 degrees. The content is the highest, and then the area of less than 3 degrees, more than 15 degrees area, not gradually increasing with the decrease of the gradient, and influenced by human factors. In the soil type, the content of organic matter in the brown soil is the most, and then the soil, the coarse bone, the stone soil, the wind sand soil. In the analysis of the five kinds of soil effective trace elements, the effective state zinc and boron are in the analysis. The effective state zinc is affected by the soil type, the effect of use type, the effect of effective state boron on the slope, the type of soil and the type of utilization, and the effective state manganese is opposite to the other trace elements under the influence of soil pH, slope and soil type. In addition to the use type, the other four elements have the effective state iron. The influence of varying degrees.
【學位授予單位】:山東農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S153.6
【參考文獻】
相關期刊論文 前10條
1 黃魏;韓宗偉;羅云;張春弟;;基于地形單元的土壤有機質(zhì)空間變異研究[J];農(nóng)業(yè)機械學報;2015年04期
2 鄧歐平;周稀;黃萍萍;鄧良基;;川中紫色丘區(qū)土壤養(yǎng)分空間分異與地形因子相關性研究[J];資源科學;2013年12期
3 劉國順;常棟;葉協(xié)鋒;楊永鋒;殷英;屈建康;;基于GIS的緩坡煙田土壤養(yǎng)分空間變異研究[J];生態(tài)學報;2013年08期
4 趙明松;張甘霖;王德彩;李德成;潘賢章;趙玉國;;徐淮黃泛平原土壤有機質(zhì)空間變異特征及主控因素分析[J];土壤學報;2013年01期
5 韓丹;程先富;謝金紅;鄧良;;大別山區(qū)江子河流域土壤有機質(zhì)的空間變異及其影響因素[J];土壤學報;2012年02期
6 王棟;李輝信;胡鋒;;不同耕作方式下覆草旱作稻田土壤肥力特征[J];土壤學報;2011年06期
7 徐劍波;宋立生;彭磊;張橋;;土壤養(yǎng)分空間估測方法研究綜述[J];生態(tài)環(huán)境學報;2011年Z2期
8 李婷;張世熔;劉潯;徐小遜;黃元仿;孫丹峰;李保國;;沱江流域中游土壤有機質(zhì)的空間變異特點及其影響因素[J];土壤學報;2011年04期
9 張曉霞;李占斌;李鵬;;黃土高原草地土壤微量元素分布特征研究[J];水土保持學報;2010年05期
10 董國濤;羅格平;許文強;諶莉;;三工河流域下游綠洲土壤微量元素有效含量空間變異特征[J];中國沙漠;2010年04期
相關碩士學位論文 前3條
1 時偉偉;廣西森林土壤養(yǎng)分空間變異性研究[D];江西農(nóng)業(yè)大學;2013年
2 佟寶輝;吉林省玉米主產(chǎn)區(qū)土壤微量元素時空分布特征[D];吉林農(nóng)業(yè)大學;2012年
3 努爾模達·達拉拜;黃土高原北部風沙區(qū)土壤中微量元素的含量變化研究[D];西北農(nóng)林科技大學;2007年
,本文編號:2079412
本文鏈接:http://sikaile.net/kejilunwen/nykj/2079412.html