綠洲滴灌棉田土壤碳氮相互作用研究
本文選題:滴灌 + 棉花秸稈; 參考:《石河子大學》2017年碩士論文
【摘要】:【目的】土壤有機碳和氮直接影響土壤肥力和作物產量,對土壤生產力和可持續(xù)利用具有重要作用。研究農田管理措施(灌溉、施肥、秸稈還田等)對土壤有機碳、氮組分及含量的影響,明確滴灌棉田土壤有機碳和氮的變化規(guī)律,闡明土壤碳氮相互作用機制,提出土壤“增碳保氮”調控途徑,為綠洲滴灌農田土壤可持續(xù)利用提供理論依據(jù)!痉椒ā坎扇∫巴庹{查和田間試驗相結合,采集石河子墾區(qū)土壤樣品200個,應用地統(tǒng)計學方法分析土壤有機質和全氮空間分布特征。田間小區(qū)試驗包括水氮試驗和碳氮試驗。水氮試驗采用水氮2因素3水平試驗設計,灌溉定額設三個水平:360、480、600 mm(分別以W360、W480、W600表示);施氮量為:0、300、450 kg N hm~(-2)(分別以N0、N300、N450表示)。碳氮試驗采用碳氮2因素3水平設計,設對照(CK)、棉花秸稈(ST)、生物碳(BC)三個施碳處理和0、300、450 kg N hm~(-2)三個施氮水平!局饕Y果】(1)20世紀60~80年代,石河子墾區(qū)土壤有機質和全氮含量穩(wěn)步增加;90年代以后有機質維持穩(wěn)定,全氮含量持續(xù)增加,碳氮比降低。目前,墾區(qū)農田土壤有機質平均含量10.8 g kg-1,全氮平均含量0.68 g kg-1。有機質含量處于缺乏和很缺乏的面積占92%;全氮含量處于極缺乏的面積占28%,缺乏和很缺乏的占60%。土壤有機質和全氮的空間分布相似,總體呈現(xiàn)南高北低。(2)增加灌水量會降低土壤總有機碳、易氧化有機碳、水溶性有機碳含量以及土壤全氮和無機氮含量,提高有機物料降解率,土壤碳氮比無明顯變化。增加施氮量顯著降低土壤總有機碳、易氧化有機碳含量和全氮含量,提高土壤水溶性有機碳、微生物量碳含量和無機氮含量,加速有機物料分解,降低土壤碳氮比。(3)增加灌水和施氮顯著提高土壤脲酶、β-葡萄糖苷酶(BG)和N-乙;-β-D-氨基葡萄糖苷酶(NAG)活性。不施氮(N0)和中氮(N300)條件下,土壤酶活性隨灌水量增加(360~600 mm)而增加;而高氮(N450)條件下,中等灌水量處理(W480)土壤酶活性最高。棉花干物質重和氮素吸收量隨灌水量和施氮量的增加顯著增加。不施氮(N0)條件下,W600處理棉花籽棉產量顯著高于W480和W360;施氮肥(N300和N450)條件下,W480處理棉花籽棉產量最高。(4)不施氮(N0)條件下,施用秸稈(ST)和生物碳(BC)土壤全氮含量變化不大或降低;施氮(N300和N450)條件下,ST和BC處理土壤全氮含量較CK分別提高39.2%和18.6%。不同施氮條件下,土壤總有機碳、易氧化有機碳和微生物量碳含量均表現(xiàn)為BCSTCK。N0條件下,ST和BC處理土壤碳氮比顯著高于CK;N300和N450條件下,ST處理土壤碳氮比較CK降低15.7%,BC處理土壤碳氮比較CK增加23.3%。(5)ST處理土壤基礎呼吸、β-葡萄糖苷酶(BG)和N-乙酰基-β-D-氨基葡萄糖苷酶(NAG)活性較CK分別提高16.5%、43.1%和71.8%;BC處理土壤基礎呼吸較CK提高14.6%,BG和NAG活性影響不顯著。不施氮(N0)條件下,秸稈(ST)和生物碳(BC)對棉花產量影響不顯著;中氮(N300)條件下,ST和BC處理棉花產量分別較CK提高17.9%和24.8%;高氮(N450)條件下,秸稈對棉花產量影響不顯著,生物碳顯著提高棉花產量和氮肥表觀利用率。【結論】石河子墾區(qū)滴灌農田土壤有機質和全氮含量總體偏低,且土壤碳氮比呈降低趨勢。過量灌溉和施氮肥均會導致土壤有機碳和全氮含量顯著降低。棉花秸稈還田配施氮肥可以提高土壤碳氮含量,但土壤碳氮比降低。生物碳和氮肥配施既可提高土壤碳氮含量,又能增加碳氮比,提高棉花產量和氮肥利用率,是滴灌農田土壤“增碳保氮”的有效措施。
[Abstract]:[Objective] soil organic carbon and nitrogen have a direct effect on soil fertility and crop yield, which play an important role in soil productivity and sustainable utilization. The effects of farmland management measures (irrigation, fertilization, straw returning and so on) on soil organic carbon, nitrogen components and content are studied, and the changes of soil organic carbon and nitrogen in the soil are clarified and the soil is clarified. The mechanism of carbon nitrogen interaction was proposed, and the regulation of soil "carbon and nitrogen conservation" was put forward to provide a theoretical basis for the sustainable utilization of soil in Oasis drip irrigation field. [method] 200 soil samples were collected in Shihezi reclamation area by field investigation and field test, and the spatial distribution characteristics of soil organic matter and total nitrogen were analyzed by the method of geostatistics. Field experiment includes water nitrogen test and carbon nitrogen test. Water nitrogen test uses 2 factors and 3 levels of water and nitrogen test design, irrigation quota is set up three levels: 360480600 mm (W360, W480, W600, respectively); nitrogen application is 0300450 kg N hm~ (-2) (N0, N300, N450, respectively). Carbon nitrogen 2 factor 3 level design and control (CK) ), cotton straw (ST), carbon (BC) three carbon application treatment and 0300450 kg N hm~ (-2) nitrogen application level. [main results] (1) in twentieth Century 60~80 years, the soil organic matter and total nitrogen content in Shihezi reclamation area increased steadily; after 90s, the organic matter remained stable, the total nitrogen content continued to increase, the carbon and nitrogen ratio decreased. The average content of the organic matter was 10.8 g kg-1, the average total nitrogen content was 0.68 g kg-1. in the lack and the very lack of area accounted for 92%; the total nitrogen content was in the extremely deficient area 28%. The spatial distribution of organic matter and total nitrogen in the soil was similar to the lack and lack of 60%., and the total nitrogen was low in the south. (2) increasing the amount of irrigation would reduce the total soil organic matter. Carbon, easy to oxidize organic carbon, water soluble organic carbon content and soil total nitrogen and inorganic nitrogen content, improve organic material degradation rate, soil carbon and nitrogen ratio no obvious change. Increase nitrogen fertilizer significantly reduce soil total organic carbon, oxidizing organic carbon content and total nitrogen content, improve soil water soluble organic carbon, microbial biomass carbon content and inorganic nitrogen content To accelerate organic material decomposition and reduce soil carbon and nitrogen ratio. (3) increase soil urease, beta glucosidase (BG) and N- acetyl - beta -D- glucosidase (NAG) activity. Under the condition of nitrogen (N0) and medium nitrogen (N300), soil enzyme activity increases with irrigation water increase (360~600 mm); while high nitrogen (N450), medium irrigation The soil enzyme activity was the highest in water treatment (W480). The dry matter weight and nitrogen absorption of cotton increased significantly with the increase of irrigation and nitrogen application. Under the condition of non nitrogen application (N0), the yield of cotton seed cotton was significantly higher than that of W480 and W360; under the condition of nitrogen application (N300 and N450), the yield of cotton seed cotton was the highest. (4) the application of straw under the condition of no nitrogen application (N0). The total nitrogen content in soil ST and BC soil changed little or decreased. Under the condition of nitrogen application (N300 and N450), the total nitrogen content of soil in ST and BC treatment increased by 39.2% and 18.6%. in different nitrogen application conditions, the total soil organic carbon, oxidizing organic carbon and microbial biomass carbon content were all under BCSTCK.N0 conditions, and ST and BC treated soil carbon and nitrogen ratio. Under the conditions of higher than CK, N300 and N450, ST treatment of soil carbon and nitrogen was reduced by 15.7%. BC treatment of soil carbon and nitrogen was increased by 23.3%. (5) ST treatment soil basal respiration, and the activity of beta glucosidase (BG) and N- acetyl beta glucosidase increased by 16.5%, 43.1% and 71.8%, respectively. And the effect of NAG activity was not significant. Under the condition of nitrogen (N0), the effect of straw (ST) and bio carbon (BC) on cotton yield was not significant. Under the condition of medium nitrogen (N300), the yield of cotton with ST and BC increased by 17.9% and 24.8%, respectively. Under the condition of high nitrogen (N450), the effect of straw on the yield of cotton was not significant, and the biological carbon significantly increased the yield of cotton and the apparent utilization of nitrogen fertilizer. [Conclusion] the content of organic matter and total nitrogen in soil of drip irrigation farmland in Shihezi reclamation area was generally low, and the soil carbon and nitrogen ratio decreased. Both excessive irrigation and nitrogen fertilizer could lead to a significant decrease in soil organic carbon and total nitrogen content. The amount of carbon and nitrogen in soil could be increased by the application of nitrogen fertilizer with cotton straw, but the soil carbon and nitrogen ratio decreased. The application of nitrogen fertilizer can not only increase the content of soil carbon and nitrogen, but also increase the ratio of carbon and nitrogen, increase the yield of cotton and the utilization rate of nitrogen fertilizer. It is an effective measure of "increasing carbon and nitrogen conservation" in the soil of drip irrigation farmland.
【學位授予單位】:石河子大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S562;S153
【參考文獻】
相關期刊論文 前10條
1 王義祥;王峰;葉菁;黃勤樓;翁伯琦;黃毅斌;;不同菌渣施用量對柑橘園土壤有機碳及其組分的影響[J];熱帶作物學報;2015年04期
2 陳文超;徐生;朱安寧;馬宏衛(wèi);何建橋;劉健明;;保護性耕作對潮土碳、氮含量的影響[J];中國農學通報;2015年09期
3 郭金瑞;宋振偉;彭憲現(xiàn);朱平;高洪軍;彭暢;張衛(wèi)建;;東北黑土區(qū)長期不同種植模式下土壤碳氮特征評價[J];農業(yè)工程學報;2015年06期
4 尚杰;耿增超;陳心想;趙軍;耿榮;王森;;施用生物炭對旱作農田土壤有機碳、氮及其組分的影響[J];農業(yè)環(huán)境科學學報;2015年03期
5 凌德;李婷;張世熔;李云;賈永霞;徐小遜;;外源土霉素和磺胺二甲嘧啶對土壤活性有機碳含量的影響[J];農業(yè)環(huán)境科學學報;2015年02期
6 廖娜;侯振安;李琦;茹思博;薄慧娟;;不同施氮水平下生物碳提高棉花產量及氮肥利用率的作用[J];植物營養(yǎng)與肥料學報;2015年03期
7 孫海靜;張曼;崔麗紅;黃選瑞;;華北落葉松林土壤有機碳對擇伐及人工更新的響應[J];中南林業(yè)科技大學學報;2014年09期
8 蘭延;黃國勤;楊濱娟;陳洪俊;王淑彬;;稻田綠肥輪作提高土壤養(yǎng)分增加有機碳庫[J];農業(yè)工程學報;2014年13期
9 譚立敏;彭佩欽;李科林;李寶珍;聶三安;葛體達;童成立;吳金水;;水稻光合同化碳在土壤中的礦化和轉化動態(tài)[J];環(huán)境科學;2014年01期
10 吳亞叢;李正才;程彩芳;劉榮杰;王斌;格日樂圖;;林下植被撫育對樟樹人工林土壤活性有機碳庫的影響[J];應用生態(tài)學報;2013年12期
相關會議論文 前1條
1 楊帆;;水分對土壤氮素轉化影響的研究進展[A];第32屆中國氣象學會年會S15 提升氣象為農服務能力,,保障農業(yè)提質增效[C];2015年
相關博士學位論文 前3條
1 蔡苗;氮肥施用對玉米根茬分解及土壤碳累積的影響[D];西北農林科技大學;2015年
2 劉岳燕;水分條件與水稻土壤微生物生物量、活性及多樣性的關系研究[D];浙江大學;2009年
3 于婧;基于GIS和地統(tǒng)計學方法的土壤養(yǎng)分空間變異及應用研究[D];華中農業(yè)大學;2007年
相關碩士學位論文 前2條
1 張雪梅;干旱區(qū)鹽生植物的土壤氮素特征研究[D];新疆大學;2011年
2 李小涵;不同耕作模式與施肥處理對土壤碳氮的影響[D];西北農林科技大學;2008年
本文編號:2001455
本文鏈接:http://sikaile.net/kejilunwen/nykj/2001455.html