前置反硝化生物濾池改進工藝處理水產養(yǎng)殖廢水的效能研究
本文選題:前置反硝化生物濾池 + 水產養(yǎng)殖廢水; 參考:《揚州大學》2017年碩士論文
【摘要】:目前水產養(yǎng)殖已成為我國國民經濟的重要組成部分。池塘養(yǎng)殖模式的推廣促進了我國經濟快速發(fā)展的同時也帶來了諸多環(huán)境和生態(tài)問題。如養(yǎng)殖環(huán)境惡化、水資源浪費、污染嚴重、設施破舊等問題,嚴重制約了水產養(yǎng)殖業(yè)的可持續(xù)發(fā)展。曝氣生物濾池在污水處理及回用工程中的研究應用已較為廣泛,它具有抗沖擊負荷能力強、占地面積小、處理效果好、結構簡單等優(yōu)點,目前將曝氣生物濾池用于處理低碳氮比水產養(yǎng)殖廢水的研究還鮮少報道。為強化脫氮效果,本試驗增加缺氧段結合好氧段的氣升式內循環(huán)曝氣生物濾池,組成前置反硝化生物濾池改進工藝。本論文研究了該工藝的掛膜啟動與最佳運行參數,系統(tǒng)內含氮化合物的遷移轉化機理以及對典型抗生素的去除效果,為該種技術用于水產養(yǎng)殖廢水的循環(huán)利用提供了新的思路和理論參考。主要研究內容和結果如下:1、本實驗在室溫20~28 ℃、Do(C/N濾池)≈3mg/L、pH為6.8~7.6的條件下啟動,將掛膜分為兩個階段:靜態(tài)悶曝階段(11d)、逐漸增大流速的馴化階段(10d),CODMn出水濃度穩(wěn)定在5mg/L左右,NH4+-N去除率達到了 58%,TN去除率達到了 62%,標志著系統(tǒng)掛膜成功。2、影響本工藝系統(tǒng)運行效能的主要因素有水力負荷、氣水比、硝化液回流比及A/O體積比等。通過正交試驗得到運行優(yōu)化參數,當水力負荷q=18m3/m2·d,硝化液回流比100%,氣水比為6:1,A/O體積比為1.8時,本工藝對各項污染物的整體去除效率達到最佳。系統(tǒng)CODMn、NH4+-N、TN去除率分別達到了 44.08%、89.46%、85.05%,出水值分別為4.55mg/L、0.68mg/L、0.87mg/L左右,均達到了 GB3838-2002《地表水環(huán)境質量標準》Ⅲ類標準,僅TP去除效果不理想。3、系統(tǒng)在最佳工況條件下穩(wěn)定運行期間,缺氧段(DN)和好氧段(C/N)對CODMn的去除率均值分別為6%、37.11%,對NH4+-N的去除率均值分別為51.45%、37.41%,對TN的去除率均值分別為64.74%、19.98%。4、缺氧(DN)反應器中的脫氮過程包括:傳統(tǒng)反硝化(反硝化菌以有機物為碳源脫氮)、微生物的同化、厭氧氨氧化作用以及少量的異養(yǎng)反硝化脫氮。從TN和的去除情況來看,基本可以認定厭氧氨氧化作用和傳統(tǒng)厭氧反硝化作用對脫氮的貢獻率相當,二者共去除了約72.4%的總氮。5、好氧(C/N)反應器中的脫氮過程包括:同步硝化反硝化作用(SND)和微生物同化作用且SND效果明顯,對總氮去除率貢獻高。好氧(C/N)反應器進出水NO2--N/NOx--N比值總處于百分位,整體偏低,說明本試驗系統(tǒng)內基本不存在NO2--N積累問題。6、本研究優(yōu)化建立了固相萃取技術萃取養(yǎng)殖廢水水箱中的磺胺甲VA唑抗生素。采用BOJIN公司的HLB固相萃取小柱,待測水樣pH調節(jié)至3,上樣流速控制在4mL/min,淋洗液為超純水,洗脫液為4mL甲醇的條件下實現(xiàn)廢水中磺胺甲VA唑的萃取。7、江蘇省常熟市一規(guī);B(yǎng)殖場水體中的磺胺甲VA唑濃度和去除情況呈現(xiàn)一定的季節(jié)變化,秋冬季濃度高于春夏季。秋季磺胺甲VA唑含量達到全年最高水平為14.31μg/L,幾乎是夏季含量1.63μg/L的8倍。本試驗重點研究對比了夏秋兩季本工藝系統(tǒng)各反應器的處理效能,缺氧DN反應器在夏秋兩季的處理效率均呈負去除率,夏季為-14%,秋季為-20%;好氧C/N反應器在夏秋兩季的處理效率均高達90%以上且夏季略好于秋季。系統(tǒng)出水磺胺甲VA唑平均濃度均處于較低水平,本工藝對抗生素的處理效果穩(wěn)定。
[Abstract]:At present, aquaculture has become an important part of our national economy. The promotion of pond culture mode promotes the rapid economic development of our country and brings many environmental and ecological problems, such as the deterioration of the aquaculture environment, the waste of water resources, the serious pollution, the old facilities and so on, which seriously restrict the sustainable development of aquaculture. Biological aerated filter has been widely used in sewage treatment and reuse engineering. It has the advantages of strong anti shock load capacity, small area, good treatment effect, simple structure and so on. At present, the research on the application of BAF to treatment of low carbon and nitrogen wastewater is rarely reported. The improvement process of pre denitrification biofilter is composed of anoxic segment combined with aerobic stage, which consists of an aerated biological filter with aerobic section. This paper studies the film starting and optimum operating parameters, the transfer mechanism of nitrogen compounds in the system and the removal effect of typical antibiotics, for the use of this technology in aquaculture waste. Water recycling provides new ideas and theoretical references. The main contents and results are as follows: 1, the experiment is started at room temperature 20~28, Do (C/N filter) 3mg/L and pH is 6.8 ~ 7.6, and the hanging film is divided into two stages: static dull aeration phase (11d), gradually increasing the acclimation stage of flow velocity (10d), and the concentration of the effluent in CODMn is stable in 5mg/L The removal rate of NH4+-N reached 58%, and the removal rate of TN reached 62%, indicating that the system was successfully.2. The main factors affecting the operating efficiency of the system were hydraulic load, gas water ratio, reflux ratio of nitrifying liquid and A/O volume ratio. The optimized parameters were obtained by orthogonal test, when the hydraulic load was q=18m3/m2 D, the reflux ratio of nitrification solution was 100%, gas was gas. When the water ratio is 6:1 and the volume ratio of A/O is 1.8, the overall removal efficiency of various pollutants is best. The removal rate of the system CODMn, NH4+-N and TN reaches 44.08%, 89.46%, 85.05% respectively. The effluent values are 4.55mg/L, 0.68mg/L, 0.87mg/L, respectively, and all reach the GB3838-2002< surface water environmental quality standard > class III standard, only TP removal effect. Not ideal.3, during the stable operation of the system under the optimal operating conditions, the mean removal rates of DN and C/N to CODMn were 6% and 37.11% respectively, the mean removal rates for NH4+-N were 51.45%, 37.41% respectively, and the average removal rates for TN were 64.74%, 19.98%.4, and DN reactor, including the traditional denitrification (anti denitrification). Nitrifying bacteria take organic matter as carbon source, microbial assimilation, anaerobic ammonia oxidation and a small amount of heterotrophic denitrification. From the TN and the removal conditions, the anaerobic ammonia oxidation and the traditional anaerobic denitrification have the same contribution rate to the denitrification. Two of the total nitrogen.5 and aerobic (C/N) reaction were removed. The process of denitrification in the device includes: simultaneous nitrification and denitrification (SND) and microbial assimilation and obvious SND effect, high contribution to the total nitrogen removal rate. The NO2--N/NOx--N ratio of the aerobic (C/N) reactor is always in the percentile and the whole is on the low side. It shows that there is no NO2--N accumulation problem.6 in this test system. This study optimized the establishment of solid solution. The phase extraction technology is used to extract the sulfamethoxazole antibiotics in the aquaculture wastewater water tank. Using the HLB solid phase extraction column of BOJIN company, the water sample pH is adjusted to 3, the sample flow velocity is controlled in 4mL/min, the leaching solution is ultra pure water and the eluant is 4mL methanol, the extraction.7 of the sulfamethoxazole VA azole in the wastewater, and the scale culture of Changshou City in Jiangsu Province The concentration and removal of sulfamethoxazole in the field showed a certain seasonal change, and the concentration in autumn and winter was higher than that in spring and summer. The highest level of VA in autumn was 14.31 mu g/L, almost 8 times that of the summer content of 1.63 g/L. This experiment was focused on comparing the treatment efficiency of each reactor in the two quarter of summer and autumn. The treatment efficiency of oxygen DN reactor in the two quarter of summer and autumn is negative, -14% in summer and -20% in autumn. The treatment efficiency of aerobic C/N reactor in summer and autumn is above 90% in summer and autumn, and in summer is slightly better than autumn. The average concentration of sulfamethoxazole VA in the effluent of the system is at a low level, and the treatment effect of this process is stable.
【學位授予單位】:揚州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X714
【參考文獻】
相關期刊論文 前10條
1 楊基峰;應光國;趙建亮;陶然;蘇浩昌;;配套養(yǎng)殖體系中部分抗生素的污染特征[J];環(huán)境化學;2015年01期
2 蕭蕾;洪彥;;都市農業(yè)新技術 魚菜共生系統(tǒng)及其立體化案例研究[J];風景園林;2014年04期
3 蔣曉陽;熊文軍;劉子正;郭一舟;黃凱;王宗平;;竹制填料生物接觸氧化工藝處理污染河水[J];環(huán)境工程學報;2014年01期
4 王軍;姜冰;韓家波;焦鳳榮;張立民;;遼寧省池塘養(yǎng)殖廢水排放的分布及其對水環(huán)境的影響[J];水產科學;2013年03期
5 趙巧玲;李谷;陶玲;李曉莉;林玉良;姚延丹;;光合細菌強化對精養(yǎng)魚塘藻類群落結構的影響[J];淡水漁業(yè);2010年06期
6 蔣進元;宋宏賓;周岳溪;崔俊濤;竇立軍;;三級生物膜工藝處理水產養(yǎng)殖循環(huán)水[J];環(huán)境科學研究;2010年09期
7 曹文平;譚水成;;竹絲生物膜反應器修復校園景觀水體的實驗研究[J];環(huán)境工程學報;2010年07期
8 季建國;鐘開偉;陳彪;鄒燕;;高郵湖水產養(yǎng)殖對水環(huán)境影響分析及對策思考[J];江蘇水利;2009年11期
9 李飛;張超杰;曲燕;陳晶;周琪;顏湘波;馬金星;;污水中短長鏈全氟羧酸檢測方法的開發(fā)[J];環(huán)境科學;2009年09期
10 陳清華;;水產養(yǎng)殖業(yè)中抗生素使用的風險及其控制[J];水產科技情報;2009年02期
相關博士學位論文 前4條
1 孫豐霞;污水處理系統(tǒng)中磺胺嘧啶和磺胺甲VA唑的優(yōu)化處理研究[D];山東農業(yè)大學;2014年
2 柳瑤;生物流化床養(yǎng)殖污水處理系統(tǒng)的設計與實驗研究[D];中國海洋大學;2013年
3 涂志鳳;新型吸附材料的制備及其在痕量金屬離子分析中的應用[D];蘭州大學;2012年
4 黃鳳蓮;灘涂海水種植-養(yǎng)殖系統(tǒng)微生物修復研究[D];中山大學;2005年
相關碩士學位論文 前5條
1 馬蘊琦;竹絲填料反應器用于污水廠尾水生物脫氮的試驗研究[D];揚州大學;2014年
2 江云;水產養(yǎng)殖廢水生物凈化技術研究[D];揚州大學;2013年
3 白楊;污水廠中磺胺類抗生素的去除效率與殘留特征[D];哈爾濱工程大學;2012年
4 郭俊元;前置反硝化生物濾池對低碳氮比污水的脫氮性能研究[D];湖南大學;2010年
5 曹涵;循環(huán)水養(yǎng)殖生物濾池濾料掛膜及其水處理效果研究[D];中國海洋大學;2008年
,本文編號:1990533
本文鏈接:http://sikaile.net/kejilunwen/nykj/1990533.html