天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于玉米冠層結(jié)構(gòu)特點的遙感監(jiān)測模型研究

發(fā)布時間:2018-05-13 00:18

  本文選題:春玉米 + 密度 ; 參考:《石河子大學(xué)》2017年碩士論文


【摘要】:【目的】通過分析新疆地區(qū)不同密度下春玉米冠層結(jié)構(gòu)特征,冠層葉面積指數(shù)、產(chǎn)量與冠層高光譜相關(guān)關(guān)系,建立不同密度下春玉米冠層葉面積指數(shù)和產(chǎn)量的高光譜估算模型,為新疆地區(qū)春玉米長勢和產(chǎn)量估算提供依據(jù)!痉椒ā吭谛陆煌河衩灼贩N、不同密度水平條件下開展大田試驗,測定了冠層光譜反射率、葉面積指數(shù)、分層葉面積、生物產(chǎn)量、株高、穗位、經(jīng)濟(jì)產(chǎn)量等數(shù)據(jù),分析在不同密度下累積葉面積指數(shù)、相對葉面積密度、生物產(chǎn)量、經(jīng)濟(jì)產(chǎn)量與高光譜的相關(guān)性,建立了葉面積指數(shù)、相對葉面積密度、生物產(chǎn)量、經(jīng)濟(jì)產(chǎn)量的相關(guān)模型并進(jìn)行模型精度的檢驗!窘Y(jié)果】通過開展試驗研究,得到如下結(jié)果:(1)隨著密度的增大,玉米最長和最寬葉片葉位保持大致不變,葉寬隨著密度的增大而顯著減小,葉長隨著密度的增大先增大后減少;單株葉面積減小,基部葉片(1-6葉)葉面積變化不大,下部葉片(7-12葉)葉面積先增大后減小,中部葉片(13-16葉)不同年際間表現(xiàn)出不同差異,上部葉片(17葉及以上)葉面積逐漸減小;群體葉面積增加,中部及上部相對葉面積差異較大;莖干重差異較大,葉干重差異較小。在D3密度下,經(jīng)濟(jì)產(chǎn)量與穗位高、相對葉面積密度呈正相關(guān),與生物產(chǎn)量呈現(xiàn)負(fù)相關(guān),顯著性均少于0.05。(2)不同密度下,春玉米葉面積指數(shù)和相對葉面積密度的估算模型不同。葉面積指數(shù)的高光譜估算模型在D1,D2,D3密度下分別以RVI[497,935],DVI[720,936],DVI[551,724]為參數(shù)擬合的估算模型y=-0.0014x2+0.1201x+2.1747(R2=0.65),y=-30.405x2+10.122x+6.2617(R2=0.49),y=965.98x2-285.68x+29.929(R2=0.65)最好,RMSE分別為0.73、0.34、0.10。相對葉面積密度的高光譜估算模型在D1,D2,D3密度下分別以RVI[1143,947],R945,RDVI[712,552]擬合的估算模型y=-19.588x2+31.649(R2=0.61),y=-26.266x2+20.746x+10.726(R2=0.42),y=-2207.436x2+538.426x-17.601(R2=0.96)精度最高,RMSE分別為0.82,2.45,0.41。(3)不同密度下,春玉米產(chǎn)量的估算模型不同。生物產(chǎn)量的高光譜估算模型在D1,D2,D3密度下分別以NDVI[719,1080],R615,DVI[1020,671]擬合的估算模型y=75.205e2.668x(R2=0.62),y=-13894.287x2+1651.835x+110.938(R2=0.22),y=120.438x2-44.535x+95.499(R2=0.34)精度最高,RMSE分別為1.99,3.61,2.37。經(jīng)濟(jì)產(chǎn)量的高光譜估算模型在D1,D2,D3密度下分別以DVI[691,401],DVI[1102,533],NDVI[1122,780]擬合的估算模型y=1004.37e-0.716x(R2=0.58),y=21255.197x2-22028.232x+6757.953(R2=0.54),y=1122.356+19.933lnx(R2=0.39)精度最高,RMSE分別為1.24,1.13,2.37!窘Y(jié)論】利用高光譜遙感可以對不同密度下春玉米冠層結(jié)構(gòu)參數(shù)及產(chǎn)量估算。
[Abstract]:[objective] to establish a hyperspectral estimation model of canopy leaf area index and yield of spring maize under different densities by analyzing the correlation between canopy structure, canopy leaf area index, yield and canopy hyperspectral spectrum of spring maize under different densities in Xinjiang. [methods] the field experiments were carried out in different spring maize varieties and different density levels in Xinjiang. The spectral reflectance of canopy, leaf area index and stratified leaf area were measured. Based on the data of biological yield, plant height, ear position and economic yield, the correlation of cumulative leaf area index, relative leaf area density, biological yield and economic yield with hyperspectral data was analyzed, and the leaf area index was established. Relative leaf area density, biological yield, economic yield, and model accuracy were tested. [results] through the experimental study, the following results were obtained: 1) with the increase of density, The leaf position of the longest and widest leaves of maize remained approximately unchanged, the leaf width decreased significantly with the increase of density, the leaf length increased first and then decreased with the increase of density, and the leaf area of single plant decreased, but the leaf area of basal leaf increased slightly. The leaf area of the lower leaves increased first and then decreased, the middle leaves showed different differences among different years, the upper leaves of 17 leaves and more) leaf area gradually decreased, and the population leaf area increased. The difference of relative leaf area between middle and upper part was great, the difference of stem dry weight and leaf dry weight was large, and the difference of leaf dry weight was small. Under D _ 3 density, the economic yield was positively correlated with ear height and relative leaf area density, and negatively correlated with biological yield (< 0.05. 2) under different densities, the estimation models of leaf area index and relative leaf area density of spring maize were different. The hyperspectral estimation model of leaf area index was fitted by RVI [497935] DVI [720936] DVI [551724] at D _ (1) C _ (2) D _ (2) D _ (3) densities, respectively. The estimated model y=-0.0014x2 0.1201x 2.1747R _ (2) O _ (2) 0.65 ~ (0.405x) 10.122x 6.26405x2 10.122x 6.2617R20.495.98x2-285.68x 29.929R2O _ (0.65) was the best one. The hyperspectral estimation model of relative leaf area density was fitted with RVI [1143947] R945N RDVI [712552] at D _ (1) C _ (2) D _ (2) density, respectively. The estimation model y=-19.588x2 31.649 ~ (9) ~ (2) ~ (0.61) ~ (1) ~ 0.61 ~ (1) ~ (1) -26.266x ~ (2) 20.746x 10.726x 10.726x ~ (2 +) R20.42y-2207.436x2 538.426x-17.601C ~ (0.96) the estimation models of spring maize yield were different at different densities. The hyperspectral estimation model of biological yield was fitted with NDVI [719C1080] R615DVI [1020671] under the density of D1C D2D3, respectively. The estimation model yt75.205e2.668xR2ON0. 62OUYYU -13894.287x2 165535x 110.93835x 110.938R2n 0.34) had the highest precision of RMSE of 1.99105e2.61kW 2.37. The hyperspectral estimation model of economic yield was fitted with DVI [691401] DVI [1102533] and NDVI [1122780] respectively under the density of D _ (1) O _ (2) D _ (2) C _ (3). [conclusion] the structural parameters and yield of spring maize canopy under different densities can be estimated by using hyperspectral remote sensing, respectively, at 212555.197x2-22028.232x 6757.953 R20.54 (R2122.356 19.933lnx / R20.39). [conclusion] using hyperspectral remote sensing, we can estimate the structure parameters and yield of spring maize canopy in different density.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S513;S127

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王娜;張韞;錢文麗;王政權(quán);谷加存;;CO_2濃度倍增對紅松幼苗根尖和葉解剖結(jié)構(gòu)及生理功能的影響[J];植物生態(tài)學(xué)報;2016年01期

2 劉冰峰;李軍;賀佳;師祖姣;;基于高光譜植被指數(shù)的夏玉米地上干物質(zhì)量估算模型研究[J];農(nóng)業(yè)機(jī)械學(xué)報;2016年03期

3 譚昌偉;楊昕;羅明;馬昌;嚴(yán)翔;陳亭亭;;以HJ-CCD影像為基礎(chǔ)的冬小麥孕穗期關(guān)鍵苗情參數(shù)遙感定量反演[J];中國農(nóng)業(yè)科學(xué);2015年13期

4 王麗愛;譚昌偉;楊昕;周旭東;朱新開;郭文善;;基于MK-SVR模型的小麥葉面積指數(shù)遙感反演[J];農(nóng)業(yè)機(jī)械學(xué)報;2015年05期

5 張良培;;高光譜目標(biāo)探測的進(jìn)展與前沿問題[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2014年12期

6 莊東英;李衛(wèi)國;武立權(quán);;冬小麥生物量衛(wèi)星遙感估測研究[J];干旱區(qū)資源與環(huán)境;2013年10期

7 李小文;王yN婷;;定量遙感尺度效應(yīng)芻議[J];地理學(xué)報;2013年09期

8 靳立斌;張吉旺;李波;崔海巖;董樹亭;劉鵬;趙斌;;高產(chǎn)高效夏玉米的冠層結(jié)構(gòu)及其光合特性[J];中國農(nóng)業(yè)科學(xué);2013年12期

9 陳鵬飛;楊飛;杜佳;;基于環(huán)境減災(zāi)衛(wèi)星時序歸一化植被指數(shù)的冬小麥產(chǎn)量估測[J];農(nóng)業(yè)工程學(xué)報;2013年11期

10 李鑫川;徐新剛;鮑艷松;黃文江;羅菊花;董瑩瑩;宋曉宇;王紀(jì)華;;基于分段方式選擇敏感植被指數(shù)的冬小麥葉面積指數(shù)遙感反演[J];中國農(nóng)業(yè)科學(xué);2012年17期

相關(guān)博士學(xué)位論文 前7條

1 高鑫;春玉米LAI和葉片氮素營養(yǎng)及產(chǎn)量的高光譜估測模型研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年

2 郎均慰;基于CMOS圖像傳感器的高分辨率航天推帚成像光譜儀信息獲取技術(shù)研究[D];中國科學(xué)院研究生院(上海技術(shù)物理研究所);2014年

3 潘佩芬;植被生態(tài)水涵養(yǎng)模數(shù)遙感反演及生態(tài)水資源量計算[D];成都理工大學(xué);2014年

4 成寶芝;基于光譜特性的高光譜圖像異常目標(biāo)檢測算法研究[D];哈爾濱工程大學(xué);2012年

5 吳振洲;微型Offner成像光譜儀和光譜數(shù)據(jù)處理[D];中國科學(xué)技術(shù)大學(xué);2012年

6 徐蕊;溫室黃瓜葉面積、光合作用及干物質(zhì)生產(chǎn)對葉片含氮量響應(yīng)的模擬模型[D];南京農(nóng)業(yè)大學(xué);2011年

7 劉麗娟;基于機(jī)載LiDAR和高光譜融合的森林參數(shù)反演研究[D];東北林業(yè)大學(xué);2011年

相關(guān)碩士學(xué)位論文 前9條

1 劉秀秀;不同鉀效率類型油菜干物質(zhì)積累及鉀素吸收利用差異研究[D];華中農(nóng)業(yè)大學(xué);2014年

2 王煈;基于HJ星遙感數(shù)據(jù)的落葉闊葉林識別模型及其全生長期LAI估算方法[D];南京大學(xué);2014年

3 張榮霞;不同作物多種葉面積指數(shù)獲取方法對比研究[D];華中農(nóng)業(yè)大學(xué);2013年

4 孫曉;基于CASI高光譜遙感數(shù)據(jù)估測森林葉面積指數(shù)研究[D];中國林業(yè)科學(xué)研究院;2012年

5 趙剛峰;冬小麥氮素營養(yǎng)監(jiān)測和產(chǎn)量預(yù)報的高光譜遙感模型研究[D];西北農(nóng)林科技大學(xué);2012年

6 王俊秀;春玉米超高產(chǎn)群體冠層鉛直結(jié)構(gòu)特征及農(nóng)藝措施調(diào)控[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2009年

7 樊科研;基于冠層高光譜的加工番茄單產(chǎn)估算模型的研究[D];石河子大學(xué);2008年

8 趙麗芳;利用Hypeion高光譜遙感數(shù)據(jù)估測森林葉面積指數(shù)[D];北京林業(yè)大學(xué);2007年

9 劉鳳麗;控制灌溉對水稻冠層結(jié)構(gòu)和干物質(zhì)增長影響研究[D];河海大學(xué);2005年

,

本文編號:1880808

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/1880808.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a3c42***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com