輪作模式下馬鈴薯土壤微生物多樣性、酶活性及根系分泌物的研究
本文選題:輪作模式 + 微生物多樣性。 參考:《甘肅農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:連作障礙的形成因素十分復(fù)雜,不僅涉及植物本身的自毒作用,而且受根際環(huán)境中微生物、土壤理化特性、養(yǎng)分異化等各項(xiàng)因素及其互相的影響而導(dǎo)致連作減產(chǎn)。輪作是維持土壤生境平衡的有效途徑,但對(duì)不同作物輪作調(diào)控土壤微生態(tài)系統(tǒng),修復(fù)和遏制連作退化土壤的機(jī)理和技術(shù)的研究相對(duì)欠缺,使得種植制度在提高土壤生態(tài)系統(tǒng)穩(wěn)定性方面的潛力未能充分挖掘和利用。本研究在長期定位試驗(yàn)的基礎(chǔ)上,采用傳統(tǒng)的土壤學(xué)和微生物學(xué)方法與454測(cè)序技術(shù)相結(jié)合,研究了休閑、不同前茬輪作和連作條件下馬鈴薯土壤微生物群落結(jié)構(gòu)、細(xì)菌和真菌多樣性變化以及土壤酶活性,并進(jìn)一步利用GC-MS技術(shù),以連作為對(duì)照,分析了輪作對(duì)馬鈴薯根系分泌物的組成及累積效應(yīng)的影響。主要結(jié)論如下:(1)與馬鈴薯連作相比,小麥-馬鈴薯輪作以及豌豆-馬鈴薯輪作馬鈴薯產(chǎn)量和水分利用效率均顯著提高。2013年和2015年,小麥和馬鈴薯輪作以及豌豆和馬鈴薯輪作馬鈴薯產(chǎn)量較連作分別提高了23.49%、25.46%和29.08%、26.73%;水分利用效率提高了15.21%、13.24%和15.30%、10.90%。2014年小麥-豌豆-馬鈴薯輪作馬鈴薯產(chǎn)量和水分利用效率較馬鈴薯連作處理分別增加了31.42%和18.74%。(2)輪作土壤細(xì)菌Chao1指數(shù)、ACE指數(shù)、Shannon指數(shù)和np Shannon指數(shù)顯著高于連作土壤。馬鈴薯輪作后變形菌門α-變形菌綱、β-變形菌綱、γ-變形菌綱和δ-變形菌綱數(shù)量減少。豌豆-馬鈴薯輪作土壤Sphingomonas(鞘氨醇單胞菌屬)數(shù)量顯著高于小麥-馬鈴薯以及小麥-馬鈴薯-馬鈴薯輪作土壤。(3)不同輪作模式對(duì)土壤真菌種群結(jié)構(gòu)產(chǎn)生了明顯的影響,優(yōu)勢(shì)種群在輪作、休閑和連作土壤中的地位發(fā)生了變化。與連作相比,輪作和休閑土壤Chao1指數(shù)和ACE指數(shù)減少,且差異達(dá)顯著水平(P0.05)。輪作土壤中Basidiomycota(擔(dān)子菌門)豐富度高于連作土壤。Eurotiomycetes(散囊菌綱)、Pezizomycetes(盤菌綱)和Agaricomycetes(傘菌綱)種類大小均明顯高于連作土壤。各供試土壤中均出現(xiàn)了一些有害病原菌,如Phoma(莖點(diǎn)屬)、Penicillium(青霉屬)、Myrothecium(漆斑屬),Fusarium(鐮孢屬)、Verticillium(輪枝孢屬)等。Phom、Myrothecium和Verticillium在輪作和休閑土壤中數(shù)量顯著減少。各供試土壤中均出現(xiàn)了一些有益真菌,Aspergillus(曲霉屬)和Chaetomium(毛殼屬)在輪作和休閑土壤中數(shù)量明顯增加。(4)土壤微生物三大種類的數(shù)量大小為:細(xì)菌放線菌真菌。土壤細(xì)菌數(shù)量占微生物總量的43~90%。由于試驗(yàn)區(qū)的土壤呈弱堿性,放線菌所占比重較大,占微生物總量的6~57%。真菌數(shù)量最少,僅占微生物總量的0.2~5.6%。輪作土壤微生物總量和細(xì)菌數(shù)量顯著增加,真菌數(shù)量的增長受到抑制。馬鈴薯全生育期土壤細(xì)菌變化趨勢(shì)為:W-P-W-P(小麥-馬鈴薯-小麥-馬鈴薯)G-P-G-P(豌豆-馬鈴薯-豌豆-馬鈴薯)P-P-P-P(馬鈴薯連作)CK(休閑)。表明輪作促使土壤微生物大量繁殖,小麥和馬鈴薯輪作有利于增加土壤細(xì)菌數(shù)量。G-P-G-P比W-P-W-P處理真菌數(shù)量分別增加了58.33%、39.02%和68.18%。說明豌豆和馬鈴薯輪作有利于提高土壤中真菌的數(shù)量。(5)輪作種植改變了土壤酶活性。輪作土壤馬鈴薯全生育期蔗糖酶和脲酶活性高于連作土壤,且差異達(dá)顯著水平(P0.05);與馬鈴薯連作2年相比,輪作土壤過氧化氫酶活性減弱,與連作3年和4年相比,輪作土壤過氧化氫酶活性增強(qiáng);與連作2年相比,輪作土壤多酚氧化酶活性提高,與連作3年相比,輪作土壤多酚氧化酶活性呈現(xiàn)“高--低--高-低”變化趨勢(shì),與連作4年相比,輪作土壤多酚氧化酶活性降低。土壤過氧化氫酶活性與蔗糖酶、脲酶、真菌數(shù)量呈顯著負(fù)相關(guān)關(guān)系,微生物總量與真菌數(shù)量呈顯著正相關(guān)關(guān)系。說明作物輪作后改善了土壤微生態(tài)環(huán)境,激發(fā)了土壤碳氮相關(guān)酶的代謝活性,減緩了根際周圍過氧化氫對(duì)作物的毒害,對(duì)連作退化土壤質(zhì)量有著積極的改善作用。(6)不同種植模式馬鈴薯根系分泌物中有17種化合物均被鑒定出,主要包括烷烴類、酯類、胺類、酸類和生物堿化合物,且烴類、酯類、酸類相對(duì)含量較高,平均為22.13%、6.7%和6.08%。輪作處理馬鈴薯根系分泌物種類比固定間作和連作處理分別減少了12.12%和14.71%,烷烴類物質(zhì)的相對(duì)含量比固定間作和連作處理分別減少了36.78%和34.47%,酸類物質(zhì)的相對(duì)含量比固定間作和連作處理分別減少了39.55%和12.89%。連作處理馬鈴薯根系分泌物中鑒定出乙胺、N-乙基嗎啉和鄰苯二甲酸二丁酯的相對(duì)含量分別為1.46%、2.87%和5%,而在輪作和間作處理中均未檢測(cè)到。輪作處理鑒定出N,N-二乙基乙酰胺相對(duì)含量比間作和連作處理分別減少55.22%和32.41%,棕櫚酸相對(duì)含量比固定間作和連作處理分別減少了28.57%和18.82%,硬脂酸相對(duì)含量比固定間作和連作處理分別減少了28.47%和21.48%。說明大豆-馬鈴薯輪作可有效降低馬鈴薯根系分泌物組分的種類和含量。馬鈴薯根系分泌物中3種主要成分棕櫚酸、硬脂酸、鄰苯二甲酸二丁酯單獨(dú)作用于馬鈴薯時(shí),均顯著抑制了馬鈴薯的生長,表現(xiàn)為化感負(fù)效應(yīng)。
[Abstract]:The formation factors of continuous cropping obstacles are very complex, which not only involves the self toxicity of plants themselves, but also causes reduction in continuous cropping by microorganisms, soil physical and chemical properties, nutrient dissimilation and other factors in the rhizosphere environment. Rotation is an effective way to maintain soil habitat balance, but the soil microecology is regulated by different crop rotation. The mechanism and technology of restoration and containment of continuous cropping soil are relatively deficient, and the potential of the planting system in improving the stability of soil ecosystem has not been fully exploited and utilized. Based on the long-term localization test, this study combines the traditional soil and microbiological methods with the 454 sequencing technology. The microbial community structure, the diversity of bacteria and fungi and the activity of soil enzyme under the condition of different crop rotation and continuous cropping, and further using GC-MS technology to analyze the effects of rotation on the composition and cumulative effect of potato root exudates. The main conclusions are as follows: (1) connect with potatoes. In comparison, the yield and water use efficiency of potato and potato rotation and pea potato rotation increased significantly in.2013 and 2015. The yield of wheat and potato rotation and potato and potato rotation increased by 23.49%, 25.46% and 29.08%, 26.73% respectively, and the water use efficiency increased by 15.21%, 13.24% and 15., respectively. 30%, in 10.90%.2014, the yield and water use efficiency of wheat and pea potato rotation increased by 31.42% and 18.74%. (2), respectively, and the Chao1 index of soil bacteria, ACE index, Shannon index and NP Shannon index were significantly higher than that of continuous cropping soil. The number of gamma deforminus and delta deforminus decreased. The number of Sphingomonas (Sphingomonas Sphingomonas) soil in pea potato rotation soil was significantly higher than that of wheat potato potato and potato potato potato rotation soil. (3) different cropping patterns have significant effects on soil fungal population structure, dominant population in rotation, leisure and continuous cropping. The status of soil was changed. Compared with continuous cropping, the Chao1 index and ACE index of rotation and leisure soil decreased, and the difference reached significant level (P0.05). The abundance of Basidiomycota (basidiomycetes) in soil was higher than that of continuous cropping soil.Eurotiomycetes (Sclerotinia), Pezizomycetes (clonomycetes) and Agaricomycetes (agaromycetes). It was significantly higher than continuous cropping soil. Some harmful pathogens were found in all the tested soils, such as Phoma (stem point), Penicillium (Penicillium), Myrothecium (lacquer), Fusarium (Fusarium), Verticillium (cladospora),.Phom, Myrothecium and Verticillium in the rotation and leisure soil. Some beneficial fungi, the number of Aspergillus (Qu Meishu) and Chaetomium (Mao Keshu) in the rotation and the leisure soil increased significantly. (4) the number of three species of soil microbes was: bacterial actinomycete fungi. The amount of soil bacteria accounted for 43~90%. of the total microbial biomass because the soil in the experimental area was weak alkaline, and the proportion of actinomycetes accounted for a large proportion. The total amount of 6~57%. fungi was the least. The total amount of soil microbes and the number of bacteria increased significantly in the 0.2~5.6%. rotation of the total microbial biomass, and the increase of the number of fungi was inhibited. The change trend of soil bacteria in the whole growth period of potato was W-P-W-P (wheat potato wheat potato) G-P-G-P (PEA potato pea potato) P -P-P-P (potato continuous cropping) CK (leisure). Indicates that the rotation of soil microbes to promote the mass reproduction of soil microorganisms, wheat and potato rotation is beneficial to increase the number of soil bacteria increased by 58.33% than the number of W-P-W-P treated fungi respectively, 39.02% and 68.18%. show that pea and potato rotation is beneficial to increase the number of fungi in the soil. (5) rotation planting change The activity of soil enzyme was changed. The activity of invertase and urease in the whole growth period of potato was higher than that of continuous cropping soil, and the difference reached significant level (P0.05). Compared with the continuous cropping of potato for 2 years, the activity of catalase in soil was weakened. Compared with continuous cropping for 3 years and 4 years, the activity of hydrogen peroxide enzyme in soil was enhanced. Compared with continuous cropping for 2 years, the soil was rotten soil. The activity of polyphenol oxidase in soil was higher than that of continuous cropping for 3 years. The activity of polyphenol oxidase in soil was "high low to low", and the activity of polyphenol oxidase in soil was lower than that of continuous cropping for 4 years. The activity of soil catalase was significantly negatively correlated with the amount of invertase, urease and fungi, and the amount of microorganism and the amount of fungi. It showed that crop rotation improved soil microecological environment, stimulated the metabolic activity of soil carbon and nitrogen related enzymes, slowed down the toxicity of hydrogen peroxide around the rhizosphere, and had a positive improvement on the quality of continuous cropping soil. (6) there were 17 compounds in potato root exudates in different planting patterns. They were identified as alkanes, esters, amines, acids and alkaloids, and the relative content of hydrocarbons, esters and acids was higher, averaging 22.13%, 6.7% and 6.08%. in the potato root exudates were reduced by 12.12% and 14.71% compared with fixed intercropping and continuous cropping, and the relative content of alkanes was compared with the fixed Intercropping. The relative content of continuous cropping was reduced by 36.78% and 34.47% respectively. The relative content of acid material decreased by 39.55% and 12.89%. continuous cropping treatment respectively, and the relative content of N- ethyl morpholine and dibutyl phthalate was 1.46%, 2.87% and 5% respectively in potato root exudates, respectively, in rotation and intercropping treatment. The relative content of N N- two ethyl acetamide decreased by 55.22% and 32.41% respectively, and the relative content of palmitic acid decreased by 28.57% and 18.82% respectively compared with the fixed intercropping and continuous cropping treatment, and the relative content of stearic acid decreased by 28.47% and 21.48%. respectively compared with the fixed intercropping and intercropping treatment, respectively. Potato rotation can effectively reduce the variety and content of root exudates in potato. The growth of potato is inhibited significantly when the 3 main components of potato root exudates, palmitic acid, stearic acid, and dibutyl phthalate alone in potato, show a negative effect of allelopathy.
【學(xué)位授予單位】:甘肅農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S532;S154
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白宇;秋種馬鈴薯效益高[J];河南農(nóng)業(yè);2000年07期
2 欒運(yùn)芳;西藏發(fā)展馬鈴薯問題研究[J];西藏科技;2000年05期
3 滕修有;;提高馬鈴薯產(chǎn)量新法[J];農(nóng)家科技;2000年03期
4 洪殿玉,李廣忠,于金昌;“訥河模式”在指導(dǎo)馬鈴薯生產(chǎn)過程中的作用[J];中國馬鈴薯;2001年02期
5 徐江,李玉清,秦軍;發(fā)揮區(qū)域優(yōu)勢(shì) 發(fā)展馬鈴薯生產(chǎn)[J];上海農(nóng)業(yè)科技;2001年06期
6 侯利霞,鐵雙貴,丁勇,張?zhí)觳?如何生產(chǎn)脫毒微型馬鈴薯[J];農(nóng)村百事通;2001年17期
7 田種存;高效多功能復(fù)合肥在馬鈴薯生產(chǎn)中的應(yīng)用效果研究[J];中國種業(yè);2002年11期
8 季相金,安景文,王祥珍,解占軍,劉煜東,于立宏;育苗專用土壤調(diào)制劑在馬鈴薯上的初步應(yīng)用效果[J];雜糧作物;2002年03期
9 孔令郁;馬鈴薯合作88號(hào)肥料與密度豐產(chǎn)栽培試驗(yàn)[J];中國馬鈴薯;2002年04期
10 張麗華;哈密地區(qū)馬鈴薯資源開發(fā)前景探討[J];新疆農(nóng)機(jī)化;2002年04期
相關(guān)會(huì)議論文 前10條
1 朱雅玲;李繼承;劉明月;;湖南省馬鈴薯生產(chǎn)區(qū)域布局探析[A];馬鈴薯產(chǎn)業(yè)與糧食安全(2009)[C];2009年
2 邱北玲;毛國偉;;關(guān)于加快發(fā)展呼倫貝爾馬鈴薯生產(chǎn)優(yōu)勢(shì)的新型模式的探討[A];2003年內(nèi)蒙古自治區(qū)自然科學(xué)學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2003年
3 樊民夫;李久昌;王淑仔;;論山西省馬鈴薯資源的開發(fā)利用[A];中國馬鈴薯學(xué)術(shù)研討文集(1996)[C];1996年
4 朱錫義;楊文光;;開發(fā)21世紀(jì)健康食品—馬鈴薯[A];中國馬鈴薯學(xué)術(shù)研討文集(1996)[C];1996年
5 張勇飛;王興原;謝慶華;龍維彪;;制約滇西北馬鈴薯生產(chǎn)主要因素的調(diào)查[A];中國作物學(xué)會(huì)馬鈴薯專業(yè)委員會(huì)2001年年會(huì)論文集[C];2001年
6 張遠(yuǎn)學(xué);田恒林;沈艷芬;高劍華;肖春芳;陳家吉;;恩施州新型通風(fēng)儲(chǔ)藏庫儲(chǔ)藏的種薯對(duì)馬鈴薯產(chǎn)量的影響[A];馬鈴薯產(chǎn)業(yè)與農(nóng)村區(qū)域發(fā)展[C];2013年
7 郭志乾;吳林科;;微集流集雨灌溉對(duì)馬鈴薯產(chǎn)量及品質(zhì)的影響[A];馬鈴薯產(chǎn)業(yè)與糧食安全(2009)[C];2009年
8 劉宏勝;;半干旱地區(qū)馬鈴薯增產(chǎn)栽培措施[A];馬鈴薯產(chǎn)業(yè)與糧食安全(2009)[C];2009年
9 程群;田恒林;沈艷芬;朱云芬;張遠(yuǎn)學(xué);高劍華;;不同葉面肥用量對(duì)馬鈴薯影響效果研究[A];馬鈴薯產(chǎn)業(yè)與科技扶貧(2011)[C];2011年
10 楊國蒼;董學(xué)敏;廖召發(fā);楊買全;劉成林;;施用氮磷鉀肥對(duì)馬鈴薯產(chǎn)量的影響[A];馬鈴薯產(chǎn)業(yè)與科技扶貧(2011)[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 張光明;西藏馬鈴薯前景看好[N];今日信息報(bào);2005年
2 本報(bào)記者 張崇寧;把馬鈴薯做成一個(gè)大產(chǎn)業(yè)[N];涼山日?qǐng)?bào)(漢);2005年
3 云南省科技情報(bào)研究所供稿;重新認(rèn)識(shí)馬鈴薯[N];云南日?qǐng)?bào);2001年
4 通訊員 諶海軍 劉健 記者 郭云飛;冷市鎮(zhèn)馬鈴薯漂洋過海[N];湖南日?qǐng)?bào);2006年
5 陳頤;馬鈴薯產(chǎn)業(yè)發(fā)展?jié)摿Υ骩N];經(jīng)濟(jì)日?qǐng)?bào);2008年
6 傅云威;馬鈴薯種植受到全球重視[N];農(nóng)民日?qǐng)?bào);2008年
7 石元清;峨邊成為我市最大的馬鈴薯種植縣[N];樂山日?qǐng)?bào);2008年
8 傅世忠邋李若鵬;呼和浩特局為馬鈴薯運(yùn)輸開辟綠色通道[N];人民鐵道;2008年
9 本報(bào)記者 石元清;馬鈴薯鼓了峨邊農(nóng)民“錢袋子”[N];樂山日?qǐng)?bào);2008年
10 徐波 鄒寧;我國馬鈴薯深加工產(chǎn)業(yè)潛力巨大[N];國際商報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 張文明;連作馬鈴薯根系分泌物的成分鑒定及其生物效應(yīng)[D];甘肅農(nóng)業(yè)大學(xué);2015年
2 孫小花;復(fù)種與施氮對(duì)黃土高原農(nóng)田土壤有機(jī)碳變化特征的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
3 李文婷;馬鈴薯產(chǎn)量形成的源庫關(guān)系及水氮對(duì)其的調(diào)控[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年
4 石建斌;馬鈴薯赤霉素合成代謝途徑關(guān)鍵酶基因GA2ox1、GA20ox1的克隆與功能分析[D];青海大學(xué);2016年
5 王春玲;氣候變化對(duì)西北半干旱地區(qū)馬鈴薯生產(chǎn)影響的研究[D];南京信息工程大學(xué);2015年
6 張自強(qiáng);馬鈴薯雜交種優(yōu)質(zhì)高產(chǎn)抗黑痣病株系選育研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2014年
7 聶利珍;應(yīng)用擬南芥CDPK1基因提高馬鈴薯抗旱性的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
8 劉星;甘肅中部沿黃灌區(qū)馬鈴薯連作障礙機(jī)理及防控技術(shù)初探[D];甘肅農(nóng)業(yè)大學(xué);2015年
9 譚雪蓮;輪作模式下馬鈴薯土壤微生物多樣性、酶活性及根系分泌物的研究[D];甘肅農(nóng)業(yè)大學(xué);2016年
10 焦峰;馬鈴薯氮素吸收分配特性及高效利用生理機(jī)制研究[D];黑龍江八一農(nóng)墾大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 崔杏春;豫馬鈴薯二號(hào)選育和推廣應(yīng)用研究[D];河南農(nóng)業(yè)大學(xué);2009年
2 劉海超;馬鈴薯在擺動(dòng)分離篩上的動(dòng)力學(xué)試驗(yàn)研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年
3 王朝友;利川市馬鈴薯生產(chǎn)的技術(shù)問題及對(duì)策研究[D];長江大學(xué);2013年
4 葛茜;漢中丘陵山區(qū)馬鈴薯玉米高效栽培模式及配套技術(shù)研究[D];西北農(nóng)林科技大學(xué);2015年
5 陳建國;施肥對(duì)旱作馬鈴薯養(yǎng)分吸收及產(chǎn)量品質(zhì)的影響[D];寧夏大學(xué);2015年
6 劉騰飛;SbSnRK1對(duì)馬鈴薯液泡轉(zhuǎn)化酶活性調(diào)控的初步研究[D];華中農(nóng)業(yè)大學(xué);2015年
7 黎學(xué)記;廣東省冬種馬鈴薯引種試驗(yàn)及病害快速監(jiān)測(cè)研究[D];仲愷農(nóng)業(yè)工程學(xué)院;2015年
8 牛紅霞;不同培肥方式對(duì)寧夏中部干旱區(qū)馬鈴薯和土壤的影響[D];寧夏大學(xué);2015年
9 楊慶飛;馬鈴薯/玉米套作品種配置效應(yīng)研究[D];西南大學(xué);2015年
10 趙里紅;套作馬鈴薯密度和施氮量的生理效應(yīng)及對(duì)產(chǎn)量品質(zhì)的影響[D];西南大學(xué);2015年
,本文編號(hào):1838384
本文鏈接:http://sikaile.net/kejilunwen/nykj/1838384.html