茶園離心撒肥裝置工作參數(shù)優(yōu)化與試驗(yàn)研究
本文選題:茶園 + 撒肥裝置 ; 參考:《江蘇大學(xué)》2016年碩士論文
【摘要】:目前茶園中尚無專用的施肥裝備,而傳統(tǒng)的大田撒肥裝置不適于在窄行距的茶園中作業(yè);茶園中常用的施肥方式主要依靠人力,勞動(dòng)效率低、強(qiáng)度高。因此,研制一種茶園專用的高效施肥裝置,具有重要的實(shí)際意義。本論文在農(nóng)業(yè)部公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)“茶園綜合作業(yè)機(jī)械化技術(shù)與裝備研究”項(xiàng)目資助下,基于離心撒肥裝置的工作過程及其結(jié)構(gòu)分析,在測(cè)定肥料顆粒力學(xué)參數(shù)及分析其運(yùn)動(dòng)的基礎(chǔ)上,對(duì)撒肥過程進(jìn)行仿真;然后通過臺(tái)架試驗(yàn)研究優(yōu)化撒肥工作參數(shù),并進(jìn)行了田間驗(yàn)證。主要研究內(nèi)容與結(jié)果如下:(1)茶樹專用肥料顆粒力學(xué)參數(shù)測(cè)定為了建立準(zhǔn)確真實(shí)的肥料顆粒模型,以茶園中茶樹需求量最大的專用肥料尿素和復(fù)合肥為研究對(duì)象,分別對(duì)其的碰撞恢復(fù)系數(shù)、三軸尺寸、密度、剛度系數(shù)、摩擦系數(shù)等參數(shù)進(jìn)行了測(cè)量。測(cè)量結(jié)果為:尿素顆粒與復(fù)合肥的碰撞恢復(fù)系數(shù)分別為0.39和0.41;尿素和復(fù)合肥的平均長度分別為3.80 mm和3.42 mm,平均寬度分別為3.57 mm和3.21 mm,厚度的均值分別為3.59 mm和3.19 mm,等效直徑的均值分別為3.64 mm和3.27 mm,兩種肥料顆粒球形度均大于93%;尿素和復(fù)合肥的顆粒密度分別為顆粒密度為1.61g/cm3和1.10 g/cm3,堆積密度分別為0.75 g/cm3和0.90 g/cm3;肥料顆粒的剛度系數(shù)分別為132.88 N/mm和85.51 N/mm;兩者的靜摩擦系數(shù)為0.59和0.55,動(dòng)摩擦系數(shù)為0.54和0.41;含水率分別為0.37%和1.10%。(2)撒肥裝置總體設(shè)計(jì)與肥料顆粒運(yùn)動(dòng)分析對(duì)茶園撒肥裝置的結(jié)構(gòu)進(jìn)行總體設(shè)計(jì),其中主要包括機(jī)架、肥料箱、仿蹄形下料口和葉片位置傾角可調(diào)的偏置式離心盤等部件,同時(shí)建立了肥料顆粒在離心盤上和脫離離心盤后的兩種動(dòng)力學(xué)模型,并分析了茶園撒肥的工作過程。其中,仿蹄形下料口既能緩沖肥料顆粒流的速度,又可以避免肥料顆粒的過多的集中于離心盤的中心;離心盤活動(dòng)葉片既方便調(diào)整來改變?nèi)龇蕦挿?又能夠提高撒肥的均勻性;機(jī)架的結(jié)構(gòu)與尺寸根據(jù)手扶拖拉機(jī)前端結(jié)構(gòu)尺寸確定,將撒肥裝置固定于手扶拖拉機(jī)的前端,在撒肥的同時(shí)可使手扶拖拉機(jī)后置的旋耕機(jī)將所撒肥料覆于土中。(3)離心撒肥過程仿真根據(jù)肥料顆粒的力學(xué)參數(shù),建立肥料顆粒的球形模型和撒肥裝置的幾何模型,并確定肥料顆粒的接觸模型和最優(yōu)時(shí)間步長;為滿足0.8 m的合適撒肥寬幅,經(jīng)試驗(yàn)測(cè)試知,與之對(duì)應(yīng)的離心盤轉(zhuǎn)速約為300 rpm;通過EDEM仿真茶園撒肥裝置的撒肥過程,初步分析了撒肥裝置行走速度、離心盤葉片個(gè)數(shù)、葉片偏置角度等單一因素對(duì)顆粒分布變異系數(shù)的影響,同時(shí)對(duì)肥料顆粒的群體分布、單顆粒速度變化、受力變化情況和位移變化情況進(jìn)行分析。仿真結(jié)果表明:當(dāng)行走速度為0.6 m/s、偏置角度為30°和葉片個(gè)數(shù)為4片時(shí),變異系數(shù)較小,均具有較好的撒肥效果;由肥料顆粒群體分布情況分析可知,撒肥過程中肥料顆粒分布的縱向均勻性較好,橫向均勻性較差;通過肥料顆粒速度、受力及位移變化分析可知,肥料顆粒在通過仿蹄形下料口時(shí),速度急劇減小,受力變大,位移變化緩慢,說明撒肥裝置的下料口起到了緩沖肥料顆粒流速的作用,避免了高速肥料顆粒流對(duì)離心盤的沖擊。(4)撒肥效果試驗(yàn)及工作參數(shù)優(yōu)化由仿真分析可知,當(dāng)行走速度為0.6 m/s、偏置角度為30°和葉片個(gè)數(shù)為4片時(shí),變異系數(shù)均較小,但為探究這三個(gè)因素的交互作用對(duì)撒肥均勻性的影響以及最優(yōu)的工作參數(shù),采用三因素三水平的二次回歸正交旋轉(zhuǎn)中心組合設(shè)計(jì)試驗(yàn)方法進(jìn)行臺(tái)架試驗(yàn);根據(jù)試驗(yàn)數(shù)據(jù)分析的結(jié)果,建立起葉片個(gè)數(shù)、偏置角度和行走速度關(guān)于分布變異系數(shù)的回歸模型;在各因素范圍的約束條件下,對(duì)目標(biāo)函數(shù)進(jìn)行優(yōu)化;并利用田間試驗(yàn)對(duì)臺(tái)架試驗(yàn)的最優(yōu)結(jié)果進(jìn)行了檢驗(yàn)。優(yōu)化結(jié)果為:葉片個(gè)數(shù)為5、偏置角度為15.72o、行走速度為0.61 m/s,此時(shí)分布變異系數(shù)達(dá)到最小值,為10.30%。田間驗(yàn)證試驗(yàn)表明:在最優(yōu)作參數(shù)下,茶園撒肥裝置的撒肥均勻性較好,實(shí)測(cè)值與理論預(yù)測(cè)值的平均相對(duì)誤差為10.15%,最大相對(duì)誤差為22.14%。與未優(yōu)化的撒肥裝置相比,優(yōu)化后的工作參數(shù)對(duì)撒肥的均勻性有了顯著提升。本論文設(shè)計(jì)并研制了一種茶園專用撒肥裝置,并優(yōu)化了其工作參數(shù);臺(tái)架與田間試驗(yàn)表明,該離心撒肥裝置在優(yōu)化的工作參數(shù)下,撒肥均勻性較好,可用于茶園施肥。
[Abstract]:There is no special fertilizer equipment in the tea garden at present, but the traditional field dressing device is not suitable to work in the narrow distance tea garden. The common method of fertilization in the tea garden is mainly dependent on manpower, low labor efficiency and high intensity. Therefore, it is of great practical significance to develop a kind of high efficiency fertilization device for tea garden. This paper is in the public welfare of the Ministry of agriculture. Under the support of the project of "mechanization technology and equipment research of Tea Garden comprehensive operation", based on the analysis of the working process and structure of the centrifugal fertilizer plant, the process is simulated on the basis of determining the mechanical parameters of the fertilizer particles and analyzing the movement of the fertilizer. The main contents and results are as follows: (1) the determination of the mechanical parameters of the special fertilizer for tea tree in order to establish an accurate and true fertilizer particle model, the research object of the special fertilizer urea and compound fertilizer, which have the largest demand for tea trees in the tea garden, and the coefficient of the collision recovery, the size of the three axis, the density and the stiffness system respectively. The results are as follows: the impact recovery coefficient of urea and compound fertilizer is 0.39 and 0.41, respectively, the average length of urea and compound fertilizer is 3.80 mm and 3.42 mm respectively, the average width is 3.57 mm and 3.21 mm respectively, the mean thickness is 3.59 mm and 3.19 mm respectively, the mean diameter of the equivalent is 3.64, respectively. The sphericity of two kinds of fertilizer particles in mm and 3.27 mm is more than 93%. The particle density of urea and compound fertilizer is 1.61g/cm3 and 1.10 g/cm3, respectively, the density is 0.75 g/cm3 and 0.90 g/cm3, respectively. The stiffness coefficient of fertilizer particles is 132.88 N/mm and 85.51 N/mm, respectively, and the static friction coefficient is 0.59 and 0.55, and the dynamic friction coefficient is 0.5. 4 and 0.41, the overall design of the fertilizer plant and the particle motion analysis of the 1.10%. (2) fertilizer, respectively, are designed for the structure of the tea garden fertilizer plant, including the frame, the fertilizer box, the imitating hoof shape and the offset centrifugal disc with adjustable angle of the blade position, and the fertilizer particles are established on the centrifuge disk. The two dynamic models were separated from the centrifuge disc, and the working process of the tea plantation was analyzed. Among them, the imitating hoof shaped cutting mouth can not only buffer the velocity of the fertilizer particle flow, but also avoid the excessive concentration of the fertilizer particles in the center of the centrifuge disk; the active blade of the centrifugal disc can be easily adjusted to change the width of the fertilizer and increase the fertilizer. The structure and size of the frame are determined according to the size of the front structure of the walking tractor, and the fertilizer device is fixed to the front end of the walking tractor, and the fertilizer can be covered with the soil. (3) the process of centrifugation is used to simulate the mechanical parameters of the fertilizer particles and to establish the ball of fertilizer particles. The geometric model and the geometric model of the fertilizer plant are used to determine the contact model of the fertilizer particles and the optimal time step. In order to meet the suitable width of 0.8 m, the rotational speed of the centrifugal disc is about 300 rpm. The walking speed of the fertilizer plant and the centrifugal disc leaf are preliminarily analyzed through the EDEM simulation of the fertilizer passing through the tea garden. The influence of single factor, blade bias angle and single factor on the variation coefficient of particle distribution was analyzed. At the same time, the population distribution of the fertilizer particles, the change of single particle velocity, the change of force and the change of displacement were analyzed. The simulation results show that the coefficient of variation is smaller when the walking speed is 0.6 m/s, the bias angle is 30 degrees and the number of the blade is 4. According to the analysis of the distribution of fertilizer particles, it is known that the vertical uniformity of the fertilizer particle distribution is better and the lateral uniformity is poor during the fertilization process. Through the analysis of the velocity of the fertilizer particle, the change of force and displacement, the velocity of the fertilizer particles decreases rapidly, the force becomes larger and the displacement is larger. The change slows slowly, which indicates that the feeding port of the fertilizer plant has the effect of buffering the flow velocity of the fertilizer particles, avoiding the impact of the high speed fertilizer particle flow on the centrifugal disc. (4) the experiment of the effect of the fertilizer and the optimization of the working parameters show that the coefficient of variation is smaller when the walking speed is 0.6 m/s, the bias angle is 30 and the number of the blade is 4. In order to explore the effect of the interaction of the three factors on the uniformity of fertilization and the optimal working parameters, a bench test was carried out by using the two regression orthogonal rotation center combination design test method with three factors and three levels, and the number of leaves, the bias angle and the walking velocity were established on the basis of the results of the test data. The regression model of number is used to optimize the target function under the constraints of various factors, and the optimal results are tested by field test. The optimization results are as follows: the number of leaves is 5, the bias angle is 15.72o, the walking speed is 0.61 m/s, and the distribution variation coefficient reaches the minimum value at this time, which is 10.30%. field test. It is shown that the fertilizer uniformity of the tea plantation device is better under the optimal parameters. The average relative error of the measured value and the predicted value is 10.15%. The maximum relative error is 22.14%. compared with the non optimized fertilizer plant. The optimized working parameters have improved the uniformity of the fertilizer. This paper has designed and developed a tea garden special. The working parameters of a fertilizer plant were used and its working parameters were optimized, and the bench and field experiments showed that the centrifuge dressing device had better uniformity and could be applied to the tea garden under the optimized working parameters.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:S224.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程軍;;神龍公司研制出全新撒肥機(jī)[J];農(nóng)業(yè)機(jī)械;2012年29期
2 李鵬;夏俊芳;;通用型擺管式撒肥機(jī)的設(shè)計(jì)[J];湖北農(nóng)業(yè)科學(xué);2013年21期
3 高靜華;;擺管式撒肥機(jī)的整機(jī)設(shè)計(jì)[J];農(nóng)機(jī)使用與維修;2014年02期
4 ;高效設(shè)施農(nóng)業(yè)機(jī)具——撒肥機(jī)[J];農(nóng)家致富;2013年05期
5 任素芬;2SF—18型離心式液壓撒肥機(jī)[J];新疆農(nóng)機(jī)化;2005年03期
6 張李嫻;呂新民;;擺管式撒肥機(jī)的研究設(shè)計(jì)[J];西北農(nóng)業(yè)學(xué)報(bào);2009年04期
7 鄭炫;秦朝民;賈首星;沈從舉;劉洋;;淺析離心式撒肥機(jī)試驗(yàn)方法[J];新疆農(nóng)機(jī)化;2009年03期
8 周斌;;尾部背推式撒肥機(jī)[J];農(nóng)業(yè)機(jī)械;2010年01期
9 ;1500撒肥機(jī)[J];現(xiàn)代農(nóng)機(jī);2010年01期
10 ;2FX系列撒肥機(jī)[J];現(xiàn)代農(nóng)機(jī);2012年02期
相關(guān)重要報(bào)紙文章 前2條
1 李太敏;機(jī)械深施化肥方法[N];山東科技報(bào);2003年
2 薛勇 朱廣石;機(jī)械深施化肥技術(shù)[N];湖北科技報(bào);2003年
相關(guān)碩士學(xué)位論文 前8條
1 楊葉成;茶園離心撒肥裝置工作參數(shù)優(yōu)化與試驗(yàn)研究[D];江蘇大學(xué);2016年
2 張李嫻;擺管式撒肥機(jī)的研究與設(shè)計(jì)[D];西北農(nóng)林科技大學(xué);2009年
3 李鵬;擺管式撒肥機(jī)機(jī)理與試驗(yàn)研究[D];華中農(nóng)業(yè)大學(xué);2013年
4 侯蕊;車載式撒肥機(jī)控制系統(tǒng)設(shè)計(jì)[D];西北農(nóng)林科技大學(xué);2014年
5 潘世強(qiáng);水平圓盤式撒肥部件的試驗(yàn)研究[D];吉林農(nóng)業(yè)大學(xué);2004年
6 師翊;基于Unity3D的撒肥機(jī)虛擬仿真平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[D];黑龍江八一農(nóng)墾大學(xué);2015年
7 李愛芹;農(nóng)家肥撒施機(jī)關(guān)鍵部件的試驗(yàn)研究[D];吉林大學(xué);2009年
8 施繼紅;農(nóng)家肥撒施機(jī)工作部件的試驗(yàn)研究[D];吉林農(nóng)業(yè)大學(xué);2002年
,本文編號(hào):1830880
本文鏈接:http://sikaile.net/kejilunwen/nykj/1830880.html