耕作方式對(duì)黑土理化性狀季節(jié)變化的影響
本文選題:保護(hù)性耕作 + 傳統(tǒng)耕作; 參考:《中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所)》2016年博士論文
【摘要】:以少免耕為代表的保護(hù)性耕作被國內(nèi)外證明是有利于土壤可持續(xù)利用的有效措施,在全球得以廣泛推廣應(yīng)用。近年來,東北黑土區(qū)保護(hù)性耕作對(duì)土壤性狀影響研究已有很多,但對(duì)土壤理化性狀季節(jié)動(dòng)態(tài)變化報(bào)道較少。本論文利用典型黑土區(qū)保護(hù)性耕作長期定位實(shí)驗(yàn),選取平地(8年)和坡耕地(坡度為5°,5年)2種土地利用方式,系統(tǒng)的研究免耕、少耕和傳統(tǒng)耕作土壤理化性狀季節(jié)變化,同時(shí)比較3種耕作方式之間差異性。主要研究的結(jié)果如下:平地與坡耕地土壤容重結(jié)果均表明,在0-10 cm與10-20 cm深度,免耕土壤容重季節(jié)變化小,壟臺(tái)與壟溝差異也較小;少耕雨季前深松處理,6月壟溝土壤容重顯著低于其他月份;傳統(tǒng)耕作壟臺(tái)土壤容重隨時(shí)間推移呈現(xiàn)增加的趨勢(shì),而壟溝容重季節(jié)變化小。免耕壟臺(tái)土壤容重高于傳統(tǒng)耕作,少耕壟臺(tái)土壤容重介于免耕與傳統(tǒng)耕作之間;對(duì)于壟溝土壤容重,少耕6月容重顯著低于其他耕作方式,而其他月份差異均不顯著。隨著深度增加,各耕作方式土壤容重逐漸增加,且平地免耕土壤容重低于坡耕地。在0-20 cm深度,土壤含水量主要由降雨量大小決定。與少耕和傳統(tǒng)耕作相比,免耕無論是平地還是坡耕地均能夠維持較高的壟臺(tái)和壟溝土壤含水量,尤其在降雨較少的情況下。各耕作方式2-10 mm與0.5-1 mm粒級(jí)團(tuán)聚體存在較為明顯季節(jié)變化,而其他粒級(jí)團(tuán)聚體季節(jié)差異小。在0-40 cm土層,免耕土壤團(tuán)聚體季節(jié)變化差異較大,8月2-10 mm粒級(jí)團(tuán)聚體含量和平均重量直徑(MWD)高于其他月份;少耕和傳統(tǒng)耕作的2-10 mm粒級(jí)團(tuán)聚體含量及MWD呈現(xiàn)降低趨勢(shì)。各耕作方式0.25mm團(tuán)聚體含量隨著時(shí)間推移呈現(xiàn)降低趨勢(shì),但免耕0.25mm團(tuán)聚體含量與MWD高于少耕、傳統(tǒng)耕作,表明免耕土壤團(tuán)聚度高,穩(wěn)定性強(qiáng)。在平地與坡耕地,免耕壟臺(tái)與壟溝8月土壤初始入滲速率高于其他月份,少耕壟臺(tái)入滲速率逐漸降低,而6月壟溝初始土壤入滲速率最高;傳統(tǒng)耕作初始入滲速率逐漸降低。免耕與傳統(tǒng)耕作壟臺(tái)與壟溝土壤穩(wěn)定入滲速率則逐漸降低,而少耕壟溝6月土壤穩(wěn)定入滲速率高于其他月份。3種耕作方式在5月差異小,少耕在6月的土壤初始和穩(wěn)定入滲速率高于免耕與傳統(tǒng)耕作,而隨著時(shí)間推移,免耕土壤滲透特性優(yōu)于其他耕作。土壤有機(jī)碳季節(jié)變化與全氮含量相似。在0-20cm深度,免耕8月土壤有機(jī)碳和全氮含量最高,少耕與傳統(tǒng)耕作土壤有機(jī)碳和全氮隨著時(shí)間推移逐漸降低。在0-100cm深度,3種耕作方式土壤有機(jī)碳及全氮季節(jié)變化無顯著差異性。傳統(tǒng)耕作在0-20cm土層土壤有機(jī)碳和全氮含量低于少耕與免耕。在40-100cm深度,各耕作方式有機(jī)碳差異較小。隨著深度增加,土壤有機(jī)碳和全氮含量呈現(xiàn)降低趨勢(shì),且免耕在平地0-20cm土層平均土壤有機(jī)碳和全氮含量高于坡耕地。在20-100cm土層,各測(cè)定深度平地與坡耕地土壤全氮含量差異均較小。在0-20cm土層,各耕作方式土壤銨態(tài)氮與全磷含量季節(jié)變化表現(xiàn)為先增加后降低,6月的土壤銨態(tài)氮和全磷含量最高。耕作方式之間比較發(fā)現(xiàn),在0-15cm,平地免耕和少耕土壤銨態(tài)氮含量高于傳統(tǒng)耕作,而坡耕地免耕在0-5cm土層銨態(tài)氮含量低于傳統(tǒng)耕作。傳統(tǒng)耕作土壤全磷含量在0-10cm深度高于免耕,但差異未達(dá)到顯著。平地和坡耕地之間比較,平地免耕和少耕表層0-10cm土壤銨態(tài)氮含量略高于坡耕地,而平地傳統(tǒng)耕作則略低于坡耕地;在10-20cm土層,免耕在平地與坡耕地差異較小,而少耕和傳統(tǒng)耕作土壤銨態(tài)氮含量則低于坡耕地。各耕作方式平地土壤全磷含量高于坡耕地。坡耕地水土流失監(jiān)測(cè)結(jié)果表明,免耕在作物生育期基本未產(chǎn)生較大的地表徑流及輸沙過程,而少耕及傳統(tǒng)耕作在降雨量最高的7月,其徑流及輸沙次數(shù)、徑流量與侵蝕模數(shù)均高于其他月份。免耕地表產(chǎn)流次數(shù)及輸沙次數(shù)小于少耕和傳統(tǒng)耕作,其土壤總徑流量和土壤侵蝕模數(shù)也遠(yuǎn)低于少耕和傳統(tǒng)耕作,說明三種耕作方式免耕水土保持效果最好。綜上述結(jié)果表明,不同耕作黑土土壤理化性狀季節(jié)變化多集中在0-20cm土壤表層。免耕在作物生育期內(nèi)維持良好的土壤結(jié)構(gòu)和滲透特性,維持較高含水量及有機(jī)碳和全氮含量,生育期水土流失量少;少耕雨季前深松,有效改善壟溝土壤結(jié)構(gòu),降低土壤侵蝕幾率,而傳統(tǒng)耕作土壤結(jié)構(gòu)、滲透特性、有機(jī)碳及養(yǎng)分等均隨時(shí)間推移降低趨勢(shì)。在0-20 cm土層,相比較少耕與傳統(tǒng)耕作,免耕能夠維持穩(wěn)定的土壤結(jié)構(gòu),提高團(tuán)聚體穩(wěn)定性及土壤有機(jī)碳、全氮、土壤養(yǎng)分含量,且在坡耕地由良好的水土保持效果;少耕雨季前壟溝深松處理,提高大孔隙含量,增加壟溝土壤入滲速率,少耕在作物生育期徑流量與侵蝕量低于傳統(tǒng)耕作,但仍顯著高于免耕,并未顯示出很好的水土保持效果。因此,在東北黑土區(qū)推廣免耕為代表的保護(hù)性耕作具有重要意義,尤其在坡耕地。
[Abstract]:Conservation tillage, represented by less and less no tillage, has been proved to be an effective measure for the sustainable utilization of soil at home and abroad, and widely popularized in the world. In recent years, many studies have been made on the effects of conservation tillage on soil properties in northeastern black soil area, but few reports on seasonal dynamic changes of soil physical and chemical properties. The long-term location experiment of conservation tillage in soil area was carried out, and 2 kinds of land use methods were selected for flat land (8 years) and slope farmland (5 degrees, 5 years). The seasonal changes of soil physical and chemical properties were systematically studied, and the differences between the 3 tillage methods were compared. The main results were as follows: the results of soil bulk density in flat land and slope land were both results. The results showed that in the depth of 0-10 cm and 10-20 cm, the seasonal variation of bulk density in no tillage soil was small, and the difference between ridge and ridge was smaller. The soil bulk density of the ridge and furrow soil in June was significantly lower than that of other months, and the soil bulk density of traditional tillage ridges increased with time, while the bulk density in the ridge and furrow was small. Compared with traditional tillage, the soil bulk density of the ridge platform was between no tillage and traditional tillage. In the furrow soil bulk density, the bulk density in June was significantly lower than that in other tillage methods, but the other months were not significant. With the depth increasing, the soil bulk density increased gradually, and the soil bulk density of no tillage soil was lower than that in the sloping field. In the 0-20 cm depth, the soil bulk density was lower than that in the slope. Degree, the soil water content is determined mainly by the size of the rainfall. Compared with the low tillage and traditional tillage, no tillage can maintain high ridge and furrow soil water content in both flat and sloping fields, especially in the case of less rainfall. 2-10 mm and 0.5-1 mm particle clusters have obvious seasonal changes, and other grains. In the 0-40 cm soil layer, no tillage soil aggregates vary greatly in season, and the content of aggregate and the average weight diameter (MWD) of 2-10 mm in August are higher than those of other months, and the content of 2-10 mm grain aggregate and MWD in less tillage and traditional tillage are lower in August. There was a decreasing trend, but no tillage 0.25mm aggregate content and MWD were higher than less tillage. Traditional tillage showed that no tillage soil had high agglomeration degree and strong stability. In plain and slope farmland, the initial infiltration rate of soil initial infiltration rate in August of no tillage ridge platform and ridge furrow was higher than that of other months, and the infiltration rate of little tillage ridge platform decreased gradually, but the initial infiltration rate of ridge and furrow in June was the highest. The initial infiltration rate of the traditional tillage decreased gradually. The soil stable infiltration rate of no tillage and traditional tillage ridge and ridge was gradually reduced, while the soil stable infiltration rate in June was higher than that of the other months of.3 cultivation in May, and the initial and stable infiltration rate of soil in June was higher than that of no tillage and traditional tillage in June, but the soil initial and stable infiltration rate of less tillage in June was higher than that of no tillage and traditional tillage. Soil organic carbon (organic carbon) and total nitrogen (organic carbon) and total nitrogen (organic carbon) and total nitrogen (organic carbon) and total nitrogen (organic carbon) and total nitrogen (organic carbon and total nitrogen) decreased gradually at 0-20cm depth in August. At 0-100cm depth, soil organic carbon and total soil organic carbon and total soil organic carbon and total soil carbon and total nitrogen in the soil were 3. There was no significant difference in the seasonal variation of nitrogen. The organic carbon and total nitrogen content of soil in the 0-20cm soil layer was lower than that of no tillage and no tillage in the soil layer. The organic carbon and total nitrogen content of the soil decreased with the depth of 40-100cm, and the average soil organic carbon and total nitrogen content in the flat soil layer of 0-20cm soil was decreased with the depth increasing. In the 20-100cm soil layer, the total nitrogen content of soil nitrogen and total phosphorus in the soil on the 0-20cm soil layer was first increased and then decreased, and the content of ammonium nitrogen and total phosphorus in the soil in June was the highest. The ammonium nitrogen content of cultivated land and less tillage soil was higher than that of traditional tillage, while the content of ammonium nitrogen in the soil layer of 0-5cm soil was lower than that of traditional tillage. The soil total phosphorus content in the traditional tillage was higher than that of no tillage at 0-10cm depth, but the difference was not significant. The content of ammonium nitrogen in 0-10cm soil in flat ground and sloping farmland was slightly higher than that between slope land and sloping land. Cultivated land, while conventional tillage was slightly lower than slope farmland; in the 10-20cm soil layer, no tillage had a small difference between flat land and sloping land, while the content of ammonium nitrogen in the soil of small tillage and traditional tillage was lower than that in the sloping field. In July with the highest rainfall, the runoff and sediment transport times, runoff and erosion modulus were higher than those of other months. The number of runoff and sediment transport times of no tillage and the number of sediment transport were less than that of less tillage and traditional tillage, and the total soil runoff and soil erosion modulus were much lower than that of less tillage and transmission. The above results showed that the seasonal changes of soil physical and chemical properties of different tillage soils were mostly concentrated on the surface of 0-20cm soil. No tillage maintained good soil structure and permeability in the growth period of crops, maintained high water content and organic carbon and total nitrogen content, and the growth period water in the growth period of the three tillage black soil. The soil loss was less; the soil structure of furrow soil was improved and the soil erosion probability was reduced effectively. The traditional tillage soil structure, permeability, organic carbon and nutrients were reduced with time. In the 0-20 cm soil layer, less tillage and traditional tillage could maintain stable soil structure and increase the stability of aggregate. The soil organic carbon, total nitrogen, soil nutrient content and good soil and water conservation effect on sloping land, the ridge and furrow deep loosening treatment before the rainy season, increase the macropore content, increase the infiltration rate of the ridge furrow soil, and reduce the runoff and erosion in the growth period of the crop less than the traditional tillage, but still significantly higher than the no tillage, and do not show good soil and water soil. Therefore, it is important to popularize conservation tillage in the black soil region of Northeast China, especially in sloping fields.
【學(xué)位授予單位】:中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S34;S151.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 張鳳云;張恩和;;保護(hù)性耕作對(duì)黑河流域農(nóng)田土壤水分利用的影響[J];自然資源學(xué)報(bào);2013年02期
2 ;[J];;年期
相關(guān)會(huì)議論文 前5條
1 李立軍;王林;劉馨;劉景輝;;陰山北麓不同耕作方式對(duì)土壤理化性質(zhì)的影響[A];中國農(nóng)作制度研究進(jìn)展2008[C];2008年
2 李其昀;;保護(hù)性耕作技術(shù)現(xiàn)狀與發(fā)展趨勢(shì)[A];全國玉米收獲保護(hù)性耕作機(jī)械化學(xué)術(shù)研討會(huì)論文集[C];2006年
3 樊博;何騰兵;李博;張麗敏;鄧冬冬;楊柳;張佩;李官平;;機(jī)械化保護(hù)性耕作對(duì)貴州省大方縣旱地土壤理化性質(zhì)的影響[A];貴州省土壤學(xué)會(huì)2012年學(xué)術(shù)研討會(huì)論文集[C];2012年
4 ;內(nèi)蒙古自治區(qū)科爾沁區(qū)保護(hù)性耕作技術(shù)示范推廣工作典型材料[A];全國保護(hù)性耕作工作會(huì)議材料匯編[C];2005年
5 ;內(nèi)蒙古自治區(qū)松山區(qū)保護(hù)性耕作技術(shù)示范推廣工作典型材料[A];全國保護(hù)性耕作工作會(huì)議材料匯編[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 蓋紅旗 張景智 董玉金;咱這“懶漢田”真的“多收了三五斗”[N];東營日?qǐng)?bào);2010年
2 本報(bào)記者 段偉華;“懶漢田”讓農(nóng)民真正“多收了三五斗”[N];山西日?qǐng)?bào);2010年
3 蓋紅旗 張景智 董玉金;墾利農(nóng)民:咱這“懶漢田”真的“多收了三五斗”[N];山東科技報(bào);2010年
4 本報(bào)記者 何定明;保護(hù)性耕作:從18畝到7600萬畝[N];農(nóng)民日?qǐng)?bào);2010年
5 韓友 本報(bào)記者 高大偉;保護(hù)性耕作在白城[N];吉林日?qǐng)?bào);2006年
6 記者 喬明亮 通訊員 景國平;臨汾機(jī)保耕作技術(shù)優(yōu)勢(shì)凸現(xiàn)[N];山西日?qǐng)?bào);2005年
7 本報(bào)記者 李樂;山西夏糧喜豐收 保護(hù)性耕作功不可沒[N];中國農(nóng)機(jī)化導(dǎo)報(bào);2009年
8 記者 劉志均;保護(hù)性耕作在山西結(jié)碩果[N];大眾科技報(bào);2002年
9 記者 段偉華;我省保護(hù)性耕作小麥抗旱增產(chǎn)效果顯著[N];山西日?qǐng)?bào);2009年
10 通訊員 景國平 李吉祥;我市機(jī)械化保護(hù)性耕作成效持續(xù)顯現(xiàn)[N];臨汾日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前3條
1 陳強(qiáng);耕作方式對(duì)黑土理化性狀季節(jié)變化的影響[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2016年
2 周興祥;一年兩熟地區(qū)機(jī)械化保護(hù)性耕作體系試驗(yàn)與分析[D];中國農(nóng)業(yè)大學(xué);2002年
3 蔡立群;不同保護(hù)性耕作措施對(duì)黃土高原旱地農(nóng)田SPAC系統(tǒng)中水分運(yùn)移特性的影響研究[D];甘肅農(nóng)業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 楊曉;不同保護(hù)性耕作措施對(duì)作物產(chǎn)量和土壤水肥效應(yīng)的影響研究[D];西北農(nóng)林科技大學(xué);2009年
2 王纏軍;保護(hù)性耕作措施對(duì)作物產(chǎn)量及土壤肥力的影響[D];西北農(nóng)林科技大學(xué);2011年
3 張權(quán);寧夏固原地區(qū)保護(hù)性耕作技術(shù)試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2008年
4 萬平;寧夏不同區(qū)域保護(hù)性耕作技術(shù)模式研究[D];中國農(nóng)業(yè)大學(xué);2005年
5 王娟;不同耕作措施對(duì)豆麥雙序列輪作農(nóng)田溫室氣體排放的影響[D];甘肅農(nóng)業(yè)大學(xué);2012年
6 馬麗;農(nóng)戶采用保護(hù)性耕作技術(shù)的行為選擇及效果評(píng)價(jià)[D];沈陽農(nóng)業(yè)大學(xué);2010年
7 王彩霞;保護(hù)性耕作對(duì)X土碳氮分布及性質(zhì)的影響[D];西北農(nóng)林科技大學(xué);2010年
8 郭小剛;不同耕作方式對(duì)土壤質(zhì)量及雜草控制的影響[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2010年
9 羅彩云;水土保持耕作下甘肅慶陽玉米—小麥—大豆輪作系統(tǒng)產(chǎn)量、土壤理化性質(zhì)動(dòng)態(tài)[D];蘭州大學(xué);2006年
10 孫佳瑞;不同耕作措施對(duì)黃土高原旱作農(nóng)田土壤微生物及酶活性的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
,本文編號(hào):1802558
本文鏈接:http://sikaile.net/kejilunwen/nykj/1802558.html