秦嶺火地塘林區(qū)不同海拔和坡位森林土壤NO通量研究
本文選題:秦嶺 + 森林 ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:氮氧化物在大氣化學(xué)性質(zhì)中起著關(guān)鍵作用。雖然一氧化氮(NO)在對流層中存在的時間相對較短,但它對局部以及區(qū)域的大氣光化學(xué)反應(yīng)具有重要的影響。對區(qū)域和全球NO庫存進(jìn)行估算時,不僅要考慮自然和人為因素排放的NO,還應(yīng)該強(qiáng)調(diào)土壤是NO的重要排放源。土壤NO通量隨著土壤溫度和水分的變化而變化很大,但它們之間的關(guān)系很復(fù)雜,迄今為止沒有明確的結(jié)論。因此,需要在不同的氣候條件下長時間研究這些關(guān)系,并覆蓋每個地區(qū)的不同季節(jié)。本研究選取秦嶺火地塘林區(qū)不同海拔(1560~2160m)有代表性的5個森林樣地以及油松林不同坡位的3個樣地,采用靜態(tài)箱—氮氧化物分析儀法對其土壤NO通量進(jìn)行1a(2014年10月至2015年10月)的監(jiān)測。主要研究結(jié)論如下:(1)土壤NO排放主要集中在植物生長季(2015年4月至2015年9月),但整個觀測期NO排放保持在較低水平。在非生長季(2014年10月至2015年3月),大部分樣地的NO排放先減少后增加,而且監(jiān)測有NO吸收。不同海拔NO年排放總量在0.02~0.19 kg·ha~(-1)·yr~(-1)之間。除華山松外,NO年排放總量隨海拔的升高而減少。不同坡位土壤NO年排放通量在中坡位最高(0.11 kg·ha~(-1)·yr~(-1)),上坡位次之(0.09 kg·ha~(-1)·yr~(-1)),下坡位最低(0.06 kg·ha~(-1)·yr~(-1))。(2)不同海拔5個樣地土壤NO通量均與地溫顯著正相關(guān)(P0.05)。華山松林土壤NO排放與土壤孔隙充水率(20-40cm)呈負(fù)相關(guān)(P0.05)。油松林土壤NO排放與土壤銨態(tài)氮含量負(fù)相關(guān)(P0.05)。上坡位土壤NO通量與地溫和WFPS顯著正相關(guān)(P0.05);中坡位土壤NO通量與地溫極顯著正相關(guān)(P0.01),與銨態(tài)氮含量顯著負(fù)相關(guān)(P0.05);下坡位NO通量與地溫和硝態(tài)氮含量顯著正相關(guān)(P0.05)。(3)土壤溫度是影響土壤NO通量的主要因子。除油松林外,各樣地的土壤孔隙充水率都低于60%,可以推斷,硝化反應(yīng)是本地區(qū)NO的重要生成源,但受到降雨和土壤有機(jī)質(zhì)等理化性質(zhì)的影響又伴隨有反硝化過程。
[Abstract]:Nitrogen oxides play a key role in the chemical properties of the atmosphere. Although the presence of nitric oxide (NO) in the troposphere is relatively short, it has an important impact on the photochemical reactions in the local and regional atmosphere. The estimation of regional and global NO inventory should not only consider the NO of natural and man-made emissions, but also should be emphasized. Soil is an important source of NO emission. Soil NO flux varies greatly with soil temperature and soil moisture, but the relationship between them is very complex. So far, there is no clear conclusion. Therefore, it is necessary to study these relationships for a long time under different climatic conditions and cover the different seasons in each area. This study selects the Qinling Mountains hot pond. The soil NO flux was monitored by static box nitrogen oxide analyzer (October 2014 to October 2015) by the static box nitrogen oxide analyzer. The main conclusions were as follows: (1) the soil NO emission was mainly concentrated in the plant growth season (April 2015 to 2) (from April 2015 to 2), with 5 representative forest plots (1560~2160m) and 3 samples of different slope positions of the pine forest. In September, 015), NO emissions were kept at a lower level during the whole period of observation. In non growing seasons (October 2014 to March 2015), most of the NO emissions were reduced first and then increased, and NO absorption was monitored. The total emission of NO years at different altitudes was between 0.02~0.19 kg. Ha~ (-1) and yr~ (-1). The total emission of NO years, except for Huashan pine, decreased with the elevation of altitude. The NO annual emission flux at different slope positions was the highest in the middle slope position (0.11 kg. Ha~ (-1). Yr~ (-1)), the upper slope (0.09 kg. Ha~ (-1) / yr~ (-1)), and the lowest slope position (0.06). (2) the soil flux and soil pore water flux in the soil of Huashan pine forest and the soil pore water filling rate were all significant. 40cm was negatively correlated (P0.05). The soil NO emission from the soil of Pinus tabulaeformis was negatively correlated with the soil ammonium nitrogen (P0.05). The NO flux in the upper slope was significantly positively correlated with the ground temperature and WFPS (P0.05); the soil NO flux in the middle slope was significantly positively correlated with the ground temperature (P0.01), and was negatively correlated with the ammonium nitrogen content (P0.05), and the NO flux at the downslope and the soil temperature and nitrate nitrogen content showed a significant negative correlation (P0.05). There is a positive correlation (P0.05). (3) soil temperature is the main factor affecting the soil NO flux. In addition to Pinus tabulaeformis forest, the soil pore water filling rate is less than 60%. Nitrification is an important source of NO in the region, but the effects of precipitation and organic matter such as soil organic matter are accompanied by denitrification.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S714
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 李鵬;李占斌;鄭郁;;不同海拔對干熱河谷地區(qū)土壤理化性質(zhì)及可蝕性的影響[J];水土保持通報;2011年04期
2 成毅;安韶山;馬云飛;;寧南山區(qū)不同坡位土壤微生物生物量和酶活性的分布特征[J];水土保持研究;2010年05期
3 侯琳;雷瑞德;張碩新;劉建軍;;秦嶺火地塘林區(qū)油松林土壤呼吸時空變異[J];生態(tài)學(xué)報;2010年19期
4 胡嬋娟;傅伯杰;劉國華;靳甜甜;郭雷;;黃土丘陵溝壑區(qū)坡面尺度上微生物的空間分布規(guī)律[J];水土保持學(xué)報;2009年03期
5 王曉龍;胡鋒;李輝信;秦江濤;張斌;;紅壤小流域不同土地利用方式對土壤微生物量碳氮的影響[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報;2006年01期
6 黃建輝,白永飛,韓興國;物種多樣性與生態(tài)系統(tǒng)功能:影響機(jī)制及有關(guān)假說[J];生物多樣性;2001年01期
7 羅天祥,李文華,趙士洞;中國油松林生產(chǎn)力格局與模擬[J];應(yīng)用生態(tài)學(xué)報;1999年03期
8 黃建輝;物種多樣性的空間格局及其形成機(jī)制初探[J];生物多樣性;1994年02期
相關(guān)博士學(xué)位論文 前1條
1 李德軍;珠江三角洲森林和蔬菜地土壤一氧化氮排放[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2007年
,本文編號:1793831
本文鏈接:http://sikaile.net/kejilunwen/nykj/1793831.html